summaryrefslogblamecommitdiff
path: root/CakePlot.R
blob: 1b80a4b7d4159742b8ccb6bf410112aae3cfcf43 (plain) (tree)





























































































































































































































                                                                                                                              
#$Id$
# Generates fitted curves so the GUI can plot them
# Based on code in IRLSkinfit
# Modifications developed by Tessella for Syngenta: Copyright (C) 2011-2016 Syngenta
# Tessella Project Reference: 6245, 7247, 8361, 7414
#
#    The CAKE R modules are free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
# 
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
# 
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <http://www.gnu.org/licenses/>.

CakeDoPlot <- function(fit, xlim = range(fit$data$time), ...)
{
    t.map.names <- names(fit$map)
    metabolites <- grep("[A-Z]\\d", t.map.names, value = TRUE)
    t.map.rest  <- setdiff(t.map.names, metabolites)
    
    # Generate the normal graphs.
    final <- CakeSinglePlot(fit, xlim)
    final_scaled <- final
    
    if(length(metabolites) > 0){
        for(i in 1:length(metabolites))
        {
            metabolite <- metabolites[i]
            
            if (names(fit$map[[metabolite]])[1] != "SFO"){
                # We do not support these curves for models other than SFO (for now; see CU-79).
                next
            }
            
            fixed <- fit$fixed$value
            names(fixed) <- rownames(fit$fixed)
            parms.all <- c(fit$par, fixed)
            ininames <- c(
                rownames(subset(fit$start, type == "state")),
                rownames(subset(fit$fixed, type == "state")))
            odeini <- parms.all[ininames]
            
            metabolite0Parameter <- metabolite
            
            if (!(metabolite %in% names(odeini))){
                metabolite0Parameter <- paste0(metabolite, "_0")
            }
            
            if (odeini[[metabolite0Parameter]] != 0){
                # We do not support these curves where the initial concentration is non-zero (for now; see CU-79).
                next
            }
            
            decay_var <- paste("k", metabolite, sep="_")
            
            # calculate the new ffm (formation factor) and generate the two ffm scale charts
            regex <- paste("f_(.+)_to", metabolite, sep="_")
            decays = grep(regex, names(fit$par), value = TRUE)
            
            if (length(decays) != 1){
                # We do not support these curves where there is formation from more than 1 compartment (for now; see CU-79).
                next
            }
            
            ffm_fitted <- sum(fit$par[decays])
            normal <- final
            ffm_scale <- NULL
            
            numeric_DT50 <- as.numeric(fit$distimes[metabolite,][["DT50"]])
            
            if (is.na(numeric_DT50)){
                # We can't get anywhere without a numeric DT50.
                next
            }
                
            # Generate the curve for DT50=1000d and ffm as fitted.
            if (decay_var %in% names(fit$par)){
                k_new <- fit$par[decay_var]*numeric_DT50/1000;
                fit$par[decay_var]<- k_new
            }
            else{
                # If decay_var was fixed, need to modify it there.
                k_new <- fit$fixed[decay_var,]["value"]*numeric_DT50/1000;
                fit$fixed[decay_var,]["value"] <- k_new[decay_var,]
            }
            
            dt50_1000_ffm_fitted <- CakeSinglePlot(fit, xlim)[metabolite]
            
            naming <- c(names(final), paste(metabolite, "DT50_1000_FFM_FITTED", sep="_"))
            normal <- c(final, dt50_1000_ffm_fitted)
            names(normal) <- naming
            final <- normal
            
            # Generate the scaled FFM
            if(ffm_fitted != 0)
            {
                ffm_scale <- 1 / ffm_fitted
                final_scaled <- final[c("time", metabolite, paste(metabolite, "DT50_1000_FFM_FITTED", sep="_"))]
                final_scaled[t.map.rest] <- NULL;
                final_frame <- as.data.frame(final_scaled)
                new_names <- c(paste(metabolite, "DT50_FITTED_FFM_1", sep="_"), paste(metabolite, "DT50_1000_FFM_1", sep="_"))
                names(final_frame) <- c("time", new_names)
                final_frame[new_names]<-final_frame[new_names]*ffm_scale;
                
                cat("<PLOT MODEL START>\n")
            
                write.table(final_frame, quote=FALSE)
                
                cat("<PLOT MODEL END>\n")
            }
        }
    }
    
    cat("<PLOT MODEL START>\n")
    
    write.table(final, quote=FALSE)
    
    cat("<PLOT MODEL END>\n")

    # View(final)
}

CakeSinglePlot <- function(fit, xlim = range(fit$data$time), scale_x = 1.0, ...)
{
   solution = fit$solution
   if ( is.null(solution) ) {
      solution <- "deSolve"
   }
   atol = fit$atol
   if ( is.null(atol) ) {
      atol = 1.0e-6
   }
   
  fixed <- fit$fixed$value
  names(fixed) <- rownames(fit$fixed)
  parms.all <- c(fit$par, fixed)
  ininames <- c(
    rownames(subset(fit$start, type == "state")),
    rownames(subset(fit$fixed, type == "state")))
  odeini <- parms.all[ininames]
  names(odeini) <- gsub("_0$", "", names(odeini))
  odenames <- c(
    rownames(subset(fit$start, type == "deparm")),
    rownames(subset(fit$fixed, type == "deparm")))
  odeparms <- parms.all[odenames]
  odeini <- AdjustOdeInitialValues(odeini, fit, odeparms)

  outtimes <- seq(0, xlim[2], length.out=CAKE.plots.resolution) * scale_x

  # Solve the system
  evalparse <- function(string)
  {
    eval(parse(text=string), as.list(c(odeparms, odeini)))
  }
  if (solution == "analytical") {
    parent.type = names(fit$map[[1]])[1]  
    parent.name = names(fit$diffs)[[1]]
    o <- switch(parent.type,
      SFO = SFO.solution(outtimes, 
          evalparse(parent.name),
          evalparse(paste("k", parent.name, sep="_"))),
      FOMC = FOMC.solution(outtimes,
          evalparse(parent.name),
          evalparse("alpha"), evalparse("beta")),
      DFOP = DFOP.solution(outtimes,
          evalparse(parent.name),
          evalparse(paste("k1", parent.name, sep="_")), 
          evalparse(paste("k2", parent.name, sep="_")),
          evalparse(paste("g", parent.name, sep="_"))),
      HS = HS.solution(outtimes,
          evalparse(parent.name),
          evalparse("k1"), evalparse("k2"),
          evalparse("tb")),
      IORE = IORE.solution(outtimes,
          evalparse(parent.name),
          evalparse(paste("k", parent.name, sep="_")),
          evalparse("N"))
    )
    out <- cbind(outtimes, o)
    dimnames(out) <- list(outtimes, c("time", parent.name))
  }
  if (solution == "eigen") {
    coefmat.num <- matrix(sapply(as.vector(fit$coefmat), evalparse), 
      nrow = length(odeini))
    e <- eigen(coefmat.num)
    c <- solve(e$vectors, odeini)
    f.out <- function(t) {
      e$vectors %*% diag(exp(e$values * t), nrow=length(odeini)) %*% c
    }
    o <- matrix(mapply(f.out, outtimes), 
      nrow = length(odeini), ncol = length(outtimes))
    dimnames(o) <- list(names(odeini), NULL)
    out <- cbind(time = outtimes, t(o))
  } 
  if (solution == "deSolve") {
    out <- ode(
      y = odeini,
      times = outtimes,
      func = fit$mkindiff, 
      parms = odeparms,
      atol = atol
    )
  }
  
  out_transformed <- PostProcessOdeOutput(out, fit, atol)
  
  # Replace values that are incalculably small with 0.
  for (compartment.name in names(fit$map)) {
    if (length(out_transformed[, compartment.name][!is.nan(out_transformed[, compartment.name])]) > 0) {
      out_transformed[, compartment.name][is.nan(out_transformed[, compartment.name])] <- 0
    }
    
    out_transformed[, compartment.name][out_transformed[, compartment.name] < 0] <- 0
  }
  
  return(out_transformed)
}

Contact - Imprint