summaryrefslogblamecommitdiff
path: root/CakeSummary.R
blob: 70f01e65b57b6bb987add97318c7889a70034bac (plain) (tree)
1
2
3
4
5
6
7
8
9
      



                                                                     

                                                               
 
                                                                                









                                                                         
                                                                          
 




                                                                
                                                   
                   










                                                                       
     









                                                                 




                             









































                                                                                                    




                                             

                                                               
                        











                                           


                                                   



                                                                 

                          








































                                                                                                                                                                          














                                                       



















                                                                                
     
    











                                                  
                                                                    
 
                                                                                                                            
                                                         
    


                                                                                                         
                                                                                                  




                                                 

                                        

                  

 
                                                                                                        
                                         














                                                                                                                                               


                                                       
                                                                                                                 


                         






                                                                                                               

                              












                                                                                                                                



                                                      
              













                                                                        
                               






                                                                   

                                           

                                            

                                           
                 

                                            

                                                                         
                                                               

                                                                                                                                 






















                                                              

                                                          





                                              




                                     

                                                         
                                                                             



                                                                   
                                        











                                                                                     
 















                                                                         





                                             




                                                                                    
     
 




                                                                                     





                                                   














                                                                                     

                                                


                                                            

                                                             






                                         
# $Id$
# CakeSummary: Functions to calculate statistics used in the summary,
# and display the summary itself.

# Parts modified from package mkin
# Parts Tessella for Syngenta: Copyright (C) 2011-2016 Syngenta
# Tessella Project Reference: 6245, 7247, 8361, 7414

#    The CAKE R modules are free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
# 
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
# 
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <http://www.gnu.org/licenses/>.

# Calculate the extra decay times for the other k values in DFOP
# and HS
# Arguments
#  type - type of compartment
#  parms.all - list of parameters
CakeExtraDT<-function(type, obs_var, parms.all) {  
    DT50k1 = NA    
    DT50k2 = NA
    if (type == "DFOP"){
        k1_name = paste("k1", obs_var, sep="_")
        k2_name = paste("k2", obs_var, sep="_")
    
        if (!is.na(parms.all[k1_name]) && !is.na(parms.all[k2_name])) {
          k1 = parms.all[k1_name]
          k2 = parms.all[k2_name]
          DT50k1 = log(2)/k1
          DT50k2 = log(2)/k2
        }
    }
    
    if (type == "HS"){
        if (!is.na(parms.all["k1"]) && !is.na(parms.all["k2"])) {
          k1 = parms.all["k1"]
          k2 = parms.all["k2"]
          DT50k1 = log(2)/k1
          DT50k2 = log(2)/k2
        }
    }
    
    ret<-c(DT50k1, DT50k2)
    names(ret)<-c("k1", "k2")
    ret
}

# Calculate the representative decay time for an IORE model.
# Arguments
#  obs_var - compartment name
#  parms.all - list of parameters
CakeIORERepresentativeDT<-function(obs_var, parms.all) {
    repDT = NA
    
    if ("N" %in% names(parms.all)){
        k_name = paste("k", obs_var, sep="_")
        k_tot = parms.all[[k_name]]
        Nval = parms.all[["N"]]
        M0_name = paste(obs_var, "0", sep="_")
        
        if (!(M0_name %in% names(parms.all))){
            M0_name = obs_var
        }
        
        M0val = parms.all[[M0_name]]
        if (Nval == 1){
            repDT = log(2)/k_tot
        }
        else{
            repDT = (log(2)/log(10)) * ((10^(Nval - 1) - 1) * M0val^(1 - Nval))/((Nval - 1) * k_tot)
        }
    }
    
    repDT
}

# Calculate the "back-calculated" DT50 for an FOMC model.
# Arguments
#  parms.all - list of parameters
CakeFOMCBackCalculatedDT<-function(parms.all) {
    repDT = NA
    
    if ("alpha" %in% names(parms.all) && "beta" %in% names(parms.all)){
        repDT = parms.all[["beta"]] * (10^(1/parms.all[["alpha"]]) - 1) * (log(2)/log(10))
    }
    
    repDT
}

# Calculate the decay times for a compartment
# Arguments
#  type - type of compartment
#  obs_var - compartment name
#  parms.all - list of parameters
# sannMaxIter - the maximum amount of iterations to do for SANN
CakeDT<-function(type, obs_var, parms.all, sannMaxIter) {    
    if (type == "SFO") {
      k_name = paste("k", obs_var, sep="_")
      k_tot = parms.all[k_name]
      DT50 = log(2)/k_tot
      DT90 = log(10)/k_tot
    }
    if (type == "FOMC") {
      alpha = parms.all["alpha"]
      beta = parms.all["beta"]
      DT50 = beta * (2^(1/alpha) - 1)
      DT90 = beta * (10^(1/alpha) - 1)
    }
    if (type == "DFOP") {
      k1 = parms.all[paste("k1", obs_var, sep="_")]
      k2 = parms.all[paste("k2", obs_var, sep="_")]
      g = parms.all[paste("g", obs_var, sep="_")]
      f <- function(t, x) {
        fraction <- g * exp( - k1 * t) + (1 - g) * exp( - k2 * t)
        (fraction - (1 - x/100))^2
      }

      DTminBounds <- 0.001
      
      # Determine a decent starting point for numerical iteration.  The latter two terms are also lower bounds for DT50.
      DT50min <- max(0.001, (1 / k1) * log(g * 2), (1 / k2) * log((1 - g) * 2)) 
      
      # Set the starting point for the numerical solver to a be a bit smaller than the computed minimum as the R optim function seems to get confused if the min is 
      # greater than the answer it's trying to converge to (up to its level of accuracy).
      DT50Initial <- DT50min * 0.9
      
      # Results greater than 10,000 are not interesting.  The R optim routine also handles very large values unreliably and can claim to converge when it is nowhere near.
      if (DT50min > 10000){
          DT50 = ">10,000"
      }else{
          DT50.temp <- optim(DT50Initial, f, method="SANN", control=list(fnscale=0.05, maxit=sannMaxIter), x = 50, lower = DTminBounds)
          DT50.o = DT50.temp$par
          DT50.converged = DT50.temp$convergence == 0
          DT50 = ifelse(!DT50.converged || DT50.o <= 0, NA, DT50.o)
          
          if (DT50.converged && DT50 > 10000){
            DT50 = ">10,000"
          }
      }
      
      # Determine a decent starting point for numerical iteration.  The latter two terms are also lower bounds for DT90.
      DT90min <- max(0.001, (1 / k1) * log(g * 10), (1 / k2) * log((1 - g) * 10))
      
      # Set the starting point for the numerical solver to a be a bit smaller than the computed minimum as the R optim function seems to get confused if the min is 
      # greater than the answer it's trying to converge to (up to its level of accuracy).
      DT90Initial <- DT90min * 0.9
      
      if (DT90min > 10000){
          DT90 = ">10,000"
      }else{
          DT90.temp <- optim(DT90Initial, f, method="SANN", control=list(fnscale=0.05, maxit=sannMaxIter), x = 90, lower = DTminBounds)
          DT90.o = DT90.temp$par
          DT90.converged = DT90.temp$convergence == 0
          DT90 = ifelse(!DT90.converged || DT90.o <= 0, NA, DT90.o)
          
          if (DT90.converged && DT90 > 10000){
            DT90 = ">10,000"
          }
      }
    }
    if (type == "HS") {
      k1 = parms.all["k1"]
      k2 = parms.all["k2"]
      tb = parms.all["tb"]
      DTx <- function(x) {
        DTx.a <- (log(100/(100 - x)))/k1
        DTx.b <- tb + (log(100/(100 - x)) - k1 * tb)/k2
        if (DTx.a < tb) DTx <- DTx.a
        else DTx <- DTx.b
        return(DTx)
      }
      DT50 <- DTx(50)
      DT90 <- DTx(90)
    }
    if (type == "IORE") {
        k_name = paste("k", obs_var, sep="_")
        k_tot = parms.all[k_name]
        Nval = parms.all["N"]
        M0_name = paste(obs_var, "0", sep="_")
        
        if (!(M0_name %in% names(parms.all))){
            M0_name = obs_var
        }
        
        M0val = parms.all[M0_name]
        
        if (Nval == 1){
            DT50 = log(2)/k_tot
            DT90 = log(10)/k_tot
        }
        else{
            DT50 = ((2^(Nval - 1) - 1) * M0val^(1 - Nval))/((Nval - 1) * k_tot)
            DT90 = ((10^(Nval - 1) - 1) * M0val^(1 - Nval))/((Nval - 1) * k_tot)
        }
    }
    
    ret<-c(DT50, DT90)
    names(ret)<-c("DT50","DT90")
    ret
}

# Compute chi2 etc
# Arguments
#  observed - data.frame of observed data
#  predicted_long - fitted values etc
#  obs_vars - compartment names
#  parms.optim - list of fitted parameters
#  state,ini.optim - list of fitted initial values
#  fixed - parameters that were fixed (taken from fit$fixed usually)
#
CakeChi2<-function(mkinmod, observed, predicted_long, obs_vars, parms.optim, state.ini.optim, state.ini, parms.ini, fixed) {
  # Calculate chi2 error levels according to FOCUS (2006)
    
    # You would usually call mkinfit to fit the data, however it seems that we've already fit the data
    # bundle <- mkinfit(mkinmod, observed, parms.ini = parms.optim, state.ini = state.ini) #, err='err') 
    # Somewhere else. Calling mkinfit may result in an error during fitting. So Instead we just create
    # the values that the new version of CakeErrMin expects. There is no class check so it's fine.
    bundle<-vector()
    bundle$predicted <- predicted_long
    bundle$observed <- observed
    bundle$obs_vars <- obs_vars
    bundle$par <- c(parms.optim, state.ini.optim)
	bundle$fixed <- fixed
    errmin.overall <- CakeErrMin(bundle)
    
    errmin.overall
}

# Compute additional statistics (r?/efficiency) of obs v pred for each compartment and the whole problem
CakeAdditionalStats<-function(obsvspred){
    agg<-aggregate(obsvspred[c('observed', 'err-var', 'predicted', 'residual')], list(name=obsvspred$variable), function(x){x}, simplify=FALSE)
    frames<-apply(agg, 1, as.data.frame);
    names(frames)<-agg$name;
    frames$all<-obsvspred
    
    t(sapply(frames, function(frame){
        # This function takes a data frame for a single variable and makes the stats for it
        # r?: FOCUS eq 6.5 p. 97
        # Efficiency: eq 6.6 p. 99
        do <- frame$observed - mean(frame$observed)
        dp <- frame$predicted - mean(frame$predicted)
        r2 <- ( sum(do * dp) / sqrt(sum(do^2) * sum(dp^2)) ) ^ 2
        eff <- 1 - ( sum((frame$predicted - frame$observed)^2) / sum(do^2) )
        list(r2=r2, eff=eff)
    }))
}

# Summarise a fit - used for CakeIrlsFit and CakeOlsFit
summary.CakeFit <- function(object, data = TRUE, distimes = TRUE, halflives = TRUE, ff = TRUE, cov = FALSE,...) {
  param  <- object$par
  pnames <- names(param)
  p      <- length(param)
  
  # If the Hessian comes back as the identity matrix, there are no residuals and so we can't provide statistics
  if(object$hessian==diag(dim(object$hessian)[1])) {
    covar=NULL
  } else {
    covar  <- try(solve(0.5*object$hessian), silent = TRUE)   # unscaled covariance
  }

  rdf    <- object$df.residual
  
  compartmentsFixedConcentration <- gsub("_0$", "", rownames(subset(object$fixed, type=="state")))
  
  # As for chi squared values, observations at time 0 should not count towards number of degrees of freedom if the corresponding
  # initial concentration is 0.
  for (compartment in compartmentsFixedConcentration){
    timeZeroObservations <- subset(object$data, time==0 & variable==compartment)
    
    if (length(row.names(timeZeroObservations)) > 0){
        rdf <- rdf - length(row.names(timeZeroObservations))
    }
  }
  
  resvar <- object$ssr / rdf
  modVariance <- object$ssr / length(object$residuals)
  
  if (!is.numeric(covar)) {
    covar=NULL
  } else {
    message <- "ok"
    rownames(covar) <- colnames(covar) <-pnames
    se     <- sqrt(diag(covar) * resvar)
    names(se) <- pnames
    tval      <- param / se
  }

  if (!all(object$start$lower >=0)) {
    message <- "Note that the one-sided t-test may not be appropriate if
      parameter values below zero are possible."
    warning(message)
  } else message <- "ok"

  if(cov && !is.null(covar)) { 
    # Filter the values for t-test, only apply t-test to k-values  
    t.names  <- grep("k(\\d+)|k_(.*)", names(tval), value = TRUE)
    t.rest   <- setdiff(names(tval), t.names)
    t.values <- c(tval)
    t.values[t.rest] <- NA
    t.result <- pt(t.values, rdf, lower.tail = FALSE)
    
    # calculate the 90% confidence interval
    alpha <- 0.10
    lci90 <- c(param) + qt(alpha/2,rdf)*se
    uci90 <- c(param) + qt(1-alpha/2,rdf)*se
    
    # calculate the 95% confidence interval
    alpha <- 0.05
    lci95 <- c(param) + qt(alpha/2,rdf)*se
    uci95 <- c(param) + qt(1-alpha/2,rdf)*se

    param <- cbind(param, se, tval, t.result, lci90, uci90, lci95, uci95)
    dimnames(param) <- list(pnames, c("Estimate", "Std. Error",
                                    "t value", "Pr(>t)", "Lower CI (90%)", "Upper CI (90%)", "Lower CI (95%)", "Upper CI (95%)"))
                                    
    ans <- list(residuals = object$residuals,
                residualVariance = resvar,
                sigma = sqrt(resvar),
                modVariance = modVariance,
                df = c(p, rdf), cov.unscaled = covar,
                cov.scaled = covar * resvar,
                info = object$info, niter = object$iterations,
                stopmess = message,
                par = param)
  } else {
    param <- cbind(param)  
    ans <- list(residuals = object$residuals,
                residualVariance = resvar,
                sigma = sqrt(resvar),
                modVariance = modVariance,
                df = c(p, rdf),
                info = object$info, niter = object$iterations,
                stopmess = message,
                par = param)
    }

  ans$diffs <- object$diffs
  if(data) {
    ans$data <- object$data
    ans$additionalstats = CakeAdditionalStats(object$data)
  }
  ans$start <- object$start
  ans$fixed <- object$fixed
  ans$errmin <- object$errmin 
  ans$penalties <- object$penalties
  if(distimes) ans$distimes <- object$distimes
  if(halflives){ 
    ans$extraDT50 <- object$extraDT50
    ans$ioreRepDT <- object$ioreRepDT
    ans$fomcRepDT <- object$fomcRepDT
  }
  if(ff) ans$ff <- object$ff
  if(length(object$SFORB) != 0) ans$SFORB <- object$SFORB
  class(ans) <- c("summary.CakeFit","summary.mkinfit", "summary.cakeModFit") 
  return(ans)  
}

# Print a summary. Used for CakeIrlsFit, CakeOlsFit and CakeMcmcFit
# Expanded from print.summary.cakeModFit
print.summary.CakeFit <- function(x, digits = max(3, getOption("digits") - 3), ...) {
  cat("\nEquations:\n")
  print(noquote(as.character(x[["diffs"]])))
  df  <- x$df
  rdf <- df[2]

  cat("\nStarting values for optimised parameters:\n")
  print(x$start)

  cat("\nFixed parameter values:\n")
  if(length(x$fixed$value) == 0) cat("None\n")
  else print(x$fixed)

  if ( !is.null(x$par) ) {
    cat("\nOptimised parameters:\n")
    printCoefmat(x$par, digits = digits, ...)
  }

  cat("\nResidual standard error:",
      format(signif(x$sigma, digits)), "on", rdf, "degrees of freedom\n")

  cat("\nChi2 error levels in percent:\n")
  x$errmin$err.min <- 100 * x$errmin$err.min
  print(x$errmin, digits=digits,...)

  printdistimes <- !is.null(x$distimes)
  if(printdistimes){
    cat("\nEstimated disappearance times:\n")
    print(x$distimes, digits=digits,...)
  }  
  
  printextraDT50 <- !is.null(x$extraDT50)
  if(printextraDT50){
    cat("\nHalf Lives for Extra k values:\n")
    print(x$extraDT50, digits=digits,...)
  }

  printIoreRepDT <- !is.null(x$ioreRepDT)
  if (printIoreRepDT){
    cat("\nRepresentative Half Life for IORE:", format(signif(x$ioreRepDT, digits)))
  }  

  printFomcRepDT <- !is.null(x$fomcRepDT)
  if (printFomcRepDT){
    cat("\nBack-calculated Half Life for FOMC:", format(signif(x$fomcRepDT, digits)))
  }

  printff <- !is.null(x$ff)
  if(printff){
    cat("\nEstimated formation fractions:\n")
    print(data.frame(ff = x$ff), digits=digits,...)
  }    

  printcor <- !is.null(x$cov.unscaled)
  if (printcor){
    Corr <- cov2cor(x$cov.unscaled)
    rownames(Corr) <- colnames(Corr) <- rownames(x$par)
    cat("\nParameter correlation:\n")
    print(Corr, digits = digits, ...)
  }

  printdata <- !is.null(x$data)
  if (printdata){
    cat("\nData:\n")
    print(format(x$data, digits = digits, scientific = FALSE,...), row.names = FALSE)
  }
  
  if(!is.null(x$additionalstats)){
    cat("\nAdditional Stats:\n");
    print(x$additionalstats, digits=digits, ...)
  }
  
  if(!(is.null(x$penalties) || 0 == dim(x$penalties)[[1]])){
    cat("\nPenalties:\n");
    print(x$penalties, digits=digits, row.names = FALSE, ...)
  }
  
  if ( !is.null(x$seed) ) {
      cat("\nRandom Seed:", x$seed, "\n")
  }
  invisible(x)
}

Contact - Imprint