1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
## -----------------------------------------------------------------------------
## The model cost and residuals
## -----------------------------------------------------------------------------
# Some of the CAKE R modules are based on mkin.
# Call to approx is only performed if there are multiple non NA values
# which should prevent most of the crashes - Rob Nelson (Tessella)
#
# Modifications developed by Hybrid Intelligence (formerly Tessella), part of
# Capgemini Engineering, for Syngenta, Copyright (C) 2011-2022 Syngenta
# Tessella Project Reference: 6245, 7247, 8361, 7414, 10091
#
# The CAKE R modules are free software: you can
# redistribute them and/or modify them under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <http://www.gnu.org/licenses/>
CakeCost <- function (model, obs, x = "time", y = NULL, err = NULL,
weight = "none", scaleVar = FALSE, cost = NULL, ...) {
## Sometimes a fit is encountered for which the model is unable to calculate
## values on the full range of observed values. In this case, we will return
## an infinite cost to ensure this value is not selected.
modelCalculatedFully <- all(unlist(obs[x]) %in% unlist(model[x]))
## convert vector to matrix
if (is.vector(obs)) {
cn <- names(obs)
obs <- matrix(data = obs, nrow = 1)
colnames(obs) <- cn
}
if (is.vector(model)) {
cn <- names(model)
model <- matrix(data=model, nrow = 1)
colnames(model) <- cn
}
##=============================================================================
## Observations
##=============================================================================
## The position of independent variable(s)
ix <- 0
if (! is.null(x)) { # mapping required...
## For now multiple independent variables are not supported...
if (length(x) > 1)
stop ("multiple independent variables in 'obs' are not yet supported")
if (! is.character(x))
stop ("'x' should be the *name* of the column with the independent variable in 'obs' or NULL")
ix <- which(colnames(obs) %in% x)
if (length(ix) != length(x))
stop(paste("Independent variable column not found in observations", x))
} else ix <- NULL
## The position of weighing values
ierr <- 0
if (! is.null(err)) {
if (! is.character(err))
stop ("'err' should be the *name* of the column with the error estimates in obs or NULL")
ierr <- which(colnames(obs) == err) # only one
if (length(ierr) == 0)
stop(paste("Column with error estimates not found in observations", err))
}
## The dependent variables
type <- 1 # data input type: type 2 is table format, type 1 is long format...
if (!is.null(y)) { # it is in table format; first column are names of observed data...
Names <- as.character(unique(obs[, 1])) # Names of data sets, all data should be model variables...
Ndat <- length(Names) # Number of data sets
ilist <- 1:Ndat
if (! is.character(y))
stop ("'y' should be the *name* of the column with the values of the dependent variable in obs")
iy <- which(colnames(obs) == y)
if (length(iy) == 0)
stop(paste("Column with value of dependent variable not found in observations", y))
type <- 2
} else { # it is a matrix, variable names are column names
Ndat <- NCOL(obs)-1
Names <- colnames(obs)
ilist <- (1:NCOL(obs)) # column positions of the (dependent) observed variables
exclude <- ix # exclude columns that are not
if (ierr > 0)
exclude <- c(ix, ierr) # exclude columns that are not
if (length(exclude) > 0)
ilist <- ilist[-exclude]
}
#================================
# The model results
#================================
ModNames <- colnames(model) # Names of model variables
if (length(ix) > 1) {
ixMod <- NULL
for ( i in 1:length(ix)) {
ix2 <- which(colnames(model) == x[i])
if (length(ix2) == 0)
stop(paste("Cannot calculate cost: independent variable not found in model output", x[i]))
ixMod <- c(ixMod, ix2)
}
xMod <- model[,ixMod] # Independent variable, model
} else if (length(ix) == 1) {
ixMod <- which(colnames(model) == x)
if (length(ixMod) == 0)
stop(paste("Cannot calculate cost: independent variable not found in model output", x))
xMod <- model[,ixMod] # Independent variable, model
}
Residual <- NULL
CostVar <- NULL
#================================
# Compare model and data...
#================================
xDat <- 0
iDat <- 1:nrow(obs)
for (i in ilist) { # for each observed variable ...
ii <- which(ModNames == Names[i])
if (length(ii) == 0) stop(paste("observed variable not found in model output", Names[i]))
yMod <- model[, ii]
if (type == 2) { # table format
iDat <- which (obs[,1] == Names[i])
if (length(ix) > 0) xDat <- obs[iDat, ix]
obsdat <- obs[iDat, iy]
} else {
if (length(ix) > 0) xDat <- obs[, 1]
obsdat <- obs[,i]
}
ii <- which(is.na(obsdat))
if (length(ii) > 0) {
xDat <- xDat[-ii]
obsdat <- obsdat[-ii]
}
# CAKE version - Added tests for multiple non-NA values
if (length(ix) > 0 && length(unique(xMod[!is.na(xMod)]))>1 && length(yMod[!is.na(yMod)])>1)
{
ModVar <- approx(xMod, yMod, xout = xDat)$y
}
else {
cat("CakeCost Warning: Only one valid point - using mean (yMod was", yMod, ")\n")
ModVar <- mean(yMod[!is.na(yMod)])
obsdat <- mean(obsdat)
}
iex <- which(!is.na(ModVar))
ModVar <- ModVar[iex]
obsdat <- obsdat[iex]
xDat <- xDat[iex]
if (ierr > 0) {
Err <- obs[iDat, ierr]
Err <- Err[iex]
} else {
if (weight == "std")
Err <- sd(obsdat)
else if (weight == "mean")
Err <- mean(abs(obsdat))
else if (weight == "none")
Err <- 1
else
stop("error: do not recognize 'weight'; should be one of 'none', 'std', 'mean'")
}
if (any(is.na(Err)))
stop(paste("error: cannot estimate weighing for observed variable: ", Names[i]))
if (min(Err) <= 0)
stop(paste("error: weighing for observed variable is 0 or negative:", Names[i]))
if (scaleVar)
Scale <- 1/length(obsdat)
else Scale <- 1
if(!modelCalculatedFully){ # In this case, the model is unable to predict on the full range, set cost to Inf
xDat <- 0
obsdat <- 0
ModVar <- Inf
Res <- Inf
res <- Inf
weight_for_residual <- Inf
} else{
Res <- (ModVar- obsdat)
res <- Res / Err
weight_for_residual <- 1 / Err
}
resScaled <- res * Scale
Residual <- rbind(Residual,
data.frame(
name = Names[i],
x = xDat,
obs = obsdat,
mod = ModVar,
weight = weight_for_residual,
res.unweighted = Res,
res = res))
CostVar <- rbind(CostVar,
data.frame(
name = Names[i],
scale = Scale,
N = length(Res),
SSR.unweighted = sum(Res^2),
SSR.unscaled = sum(res^2),
SSR = sum(resScaled^2)))
} # end loop over all observed variables
## SSR
Cost <- sum(CostVar$SSR * CostVar$scale)
Lprob <- -sum(log(pmax(0, dnorm(Residual$mod, Residual$obs, Err)))) # avoid log of negative values
#Lprob <- -sum(log(pmax(.Machine$double.xmin, dnorm(Residual$mod, Residual$obs, Err)))) #avoid log(0)
if (! is.null(cost)) {
Cost <- Cost + cost$model
CostVar <- rbind(CostVar, cost$var)
Residual <- rbind(Residual, cost$residuals)
Lprob <- Lprob + cost$minlogp
}
out <- list(model = Cost, cost = Cost, minlogp = Lprob, var = CostVar, residuals = Residual)
class(out) <- "modCost"
return(out)
}
## -----------------------------------------------------------------------------
## S3 methods of modCost
## -----------------------------------------------------------------------------
plot.modCost<- function(x, legpos="topleft", ...) {
nvar <- nrow(x$var)
dots <- list(...)
dots$xlab <- if(is.null(dots$xlab)) "x" else dots$xlab
dots$ylab <- if(is.null(dots$ylab)) "weighted residuals" else dots$ylab
DotsPch <- if(is.null(dots$pch)) (16:24) else dots$pch
dots$pch <- if(is.null(dots$pch)) (16:24)[x$residuals$name] else dots$pch[x$residuals$name]
DotsCol <- if(is.null(dots$col)) (1:nvar) else dots$col
dots$col <- if(is.null(dots$col)) (1:nvar)[x$residuals$name] else dots$col[x$residuals$name]
do.call("plot", c(alist(x$residuals$x, x$residuals$res), dots))
# plot(x$residuals$x, x$residuals$res, xlab="x", ylab="weighted residuals",
# pch=c(16:24)[x$residuals$name],col=c(1:nvar)[x$residuals$name],...)
if (! is.na(legpos))
legend(legpos, legend = x$var$name, col = DotsCol, pch = DotsPch)
}
## -----------------------------------------------------------------------------
## Internal cost function for optimisers
## -----------------------------------------------------------------------------
# Cost function. The returned structure must have $model
# We need to preserve state between calls so make a closure
CakeInternalCostFunctions <- function(mkinmod, state.ini.optim, state.ini.optim.boxnames,
state.ini.fixed, parms.fixed, observed, mkindiff,
quiet, atol=1e-6, solution="deSolve", err="err"){
cost.old <- 1e+100
calls <- 0
out_predicted <- NA
get.predicted <- function(){ out_predicted }
get.best.cost <- function(){ cost.old }
reset.best.cost <- function() { cost.old<<-1e+100 }
get.calls <- function(){ calls }
set.calls <- function(newcalls){ calls <<- newcalls }
set.error<-function(err) { observed$err <<- err }
# The called cost function
cost <- function(P) {
assign("calls", calls + 1, inherits = TRUE)
print(P)
if (length(state.ini.optim) > 0) {
odeini <- c(P[1:length(state.ini.optim)], state.ini.fixed)
names(odeini) <- c(state.ini.optim.boxnames, names(state.ini.fixed))
} else {
odeini <- state.ini.fixed
}
odeparms <- c(P[(length(state.ini.optim) + 1):length(P)], parms.fixed)
# Ensure initial state is at time 0
outtimes = unique(c(0,observed$time))
odeini <- AdjustOdeInitialValues(odeini, mkinmod, odeparms)
if (solution == "analytical") {
evalparse <- function(string)
{
eval(parse(text=string), as.list(c(odeparms, odeini)))
}
parent.type = names(mkinmod$map[[1]])[1]
parent.name = names(mkinmod$diffs)[[1]]
o <- switch(parent.type,
SFO = SFO.solution(outtimes,
evalparse(parent.name),
evalparse(paste("k", parent.name, sep="_"))),
FOMC = FOMC.solution(outtimes,
evalparse(parent.name),
evalparse("alpha"), evalparse("beta")),
DFOP = DFOP.solution(outtimes,
evalparse(parent.name),
evalparse(paste("k1", parent.name, sep="_")),
evalparse(paste("k2", parent.name, sep="_")),
evalparse(paste("g", parent.name, sep="_"))),
HS = HS.solution(outtimes,
evalparse(parent.name),
evalparse("k1"), evalparse("k2"),
evalparse("tb")),
IORE = IORE.solution(outtimes,
evalparse(parent.name),
evalparse(paste("k", parent.name, sep="_")),
evalparse("N")))
out <- cbind(outtimes, o)
dimnames(out) <- list(outtimes, c("time", sub("_free", "", parent.name)))
}
if (solution == "deSolve")
{
out <- ode(y = odeini, times = outtimes, func = mkindiff, parms = odeparms, atol = atol)
}
out_transformed <- PostProcessOdeOutput(out, mkinmod, atol)
assign("out_predicted", out_transformed, inherits = TRUE)
mC <- CakeCost(out_transformed, observed, y = "value", err = err, scaleVar = FALSE)
mC$penalties <- CakePenalties(odeparms, out_transformed, observed)
mC$model <- mC$cost + mC$penalties
if (mC$model < cost.old) {
if (!quiet) {
cat("Model cost at call ", calls, ": m", mC$cost, 'p:', mC$penalties, 'o:', mC$model, "\n")
}
assign("cost.old", mC$model, inherits = TRUE)
}
# HACK to make nls.lm respect the penalty, as it just uses residuals and ignores the cost
if(mC$penalties > 0){
mC$residuals$res <- mC$residuals$res + (sign(mC$residuals$res) * mC$penalties / length(mC$residuals$res))
}
return(mC)
}
list(cost=cost,
get.predicted=get.predicted,
get.calls=get.calls, set.calls=set.calls,
get.best.cost=get.best.cost, reset.best.cost=reset.best.cost,
set.error=set.error
)
}
|