1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
|
# $Id$
# Some of the CAKE R modules are based on mkin,
# Developed by Hybrid Intelligence (formerly Tessella), part of Capgemini Engineering,
# for Syngenta: Copyright (C) 2011-2022 Syngenta
# Tessella Project Reference: 6245, 7247, 8361, 7414, 10091
# The CAKE R modules are free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Shifts parameters slightly away from boundaries specified in "lower" and
# "upper" (to avoid computational issues after parameter transforms in modFit).
ShiftAwayFromBoundaries <- function(parameters, lower, upper) {
parametersOnLowerBound = which(parameters == lower)
parameters[parametersOnLowerBound] <- parameters[parametersOnLowerBound] * (1 + .Machine$double.eps) + .Machine$double.xmin
parametersOnUpperBound = which(parameters == upper)
parameters[parametersOnUpperBound] <- parameters[parametersOnUpperBound] * (1 - .Machine$double.neg.eps) - .Machine$double.xmin
return(parameters)
}
# Adjusts stated initial values to put into the ODE solver.
#
# odeini: The initial values to adjust (in the form that would be fed into the ode function).
# cake.model: The expression of the model that we are solving.
# odeparms: The parameters for the ODE (in the form that would be fed into the ode function).
#
# Returns: Adjusted initial values.
AdjustOdeInitialValues <- function(odeini, cake.model, odeparms) {
odeini.names <- names(odeini)
for (ini.name in odeini.names) {
# For DFOP metabolites in two compartments, need to calculate some initial conditions for the ODEs.
if (!(ini.name %in% names(cake.model$diffs))) {
subcompartment1.name <- paste(ini.name, "1", sep = "_")
subcompartment2.name <- paste(ini.name, "2", sep = "_")
if (subcompartment1.name %in% names(cake.model$diffs) && subcompartment2.name %in% names(cake.model$diffs)) {
g.parameter.name = paste("g", ini.name, sep = "_")
odeini[[subcompartment1.name]] <- odeini[[ini.name]] * odeparms[[g.parameter.name]]
odeini[[subcompartment2.name]] <- odeini[[ini.name]] * (1 - odeparms[[g.parameter.name]])
}
}
}
# It is important that these parameters are stated in the same order as the differential equations.
return(odeini[names(cake.model$diffs)])
}
# Post-processes the output from the ODE solver (or analytical process), including recombination of sub-compartments.
#
# odeoutput: The output of the ODE solver.
# cake.model: The expression of the model that we are solving.
# atol: The tolerance to which the solution has been calculated.
#
# Returns: Post-processed/transformed ODE output.
PostProcessOdeOutput <- function(odeoutput, cake.model, atol) {
out_transformed <- data.frame(time = odeoutput[, "time"])
# Replace values that are incalculably small with 0.
for (col.name in colnames(odeoutput)) {
if (col.name == "time") {
next
}
# If we have non-NaN, positive outputs...
if (length(odeoutput[, col.name][!is.nan(odeoutput[, col.name]) & odeoutput[, col.name] > 0]) > 0) {
# ...then replace the NaN outputs.
odeoutput[, col.name][is.nan(odeoutput[, col.name])] <- 0
}
# Round outputs smaller than the used tolerance down to 0.
odeoutput[, col.name][odeoutput[, col.name] < atol] <- 0
}
# Re-combine sub-compartments (if required)
for (compartment.name in names(cake.model$map)) {
if (length(cake.model$map[[compartment.name]]) == 1) {
out_transformed[compartment.name] <- odeoutput[, compartment.name]
} else {
out_transformed[compartment.name] <- rowSums(odeoutput[, cake.model$map[[compartment.name]]])
}
}
return(out_transformed)
}
# Reorganises data in a wide format to a long format.
#
# wide_data: The data in wide format.
# time: The name of the time variable in wide_data (default "t").
#
# Returns: Reorganised data.
wide_to_long <- function(wide_data, time = "t") {
colnames <- names(wide_data)
if (!(time %in% colnames)) {
stop("The data in wide format have to contain a variable named ", time, ".")
}
vars <- subset(colnames, colnames != time)
n <- length(colnames) - 1
long_data <- data.frame(name = rep(vars, each = length(wide_data[[time]])),
time = as.numeric(rep(wide_data[[time]], n)), value = as.numeric(unlist(wide_data[vars])),
row.names = NULL)
return(long_data)
}
RunFitStep <- function(cost, costForExtraSolver, useExtraSolver, parameters, lower, upper, control) {
if (useExtraSolver) {
a <- try(fit <- solnp(parameters, fun = costForExtraSolver, LB = lower, UB = upper, control = control), silent = TRUE)
fitted_with_extra_solver <- TRUE
if (class(a) == "try-error") {
cat('Extra solver failed, trying PORT')
## now using submethod already
a <- try(fit <- modFit(cost, parameters, lower = lower, upper = upper, method = 'Port', control = control))
fitted_with_extra_solver <- FALSE
if (class(a) == "try-error") {
cat('PORT failed, trying L-BFGS-B')
fit <- modFit(cost, parameters, lower = lower, upper = upper, method = 'L-BFGS-B', control = control)
}
}
} else {
# modFit parameter transformations can explode if you put in parameters that are equal to a bound, so we move them away by a tiny amount.
all.optim <- ShiftAwayFromBoundaries(parameters, lower, upper)
fit <- modFit(cost, all.optim, lower = lower,
upper = upper, control = control)
fitted_with_extra_solver <- FALSE
}
return(list(fit = fit, fitted_with_extra_solver = fitted_with_extra_solver))
}
GetFitValuesAfterExtraSolver <- function(fit, cake_cost) {
fit$ssr <- fit$values[length(fit$values)]
fit$residuals <- cake_cost$residual$res
## mean square per varaible
if (class(cake_cost) == "modCost") {
names(fit$residuals) <- cake_cost$residuals$name
fit$var_ms <- cake_cost$var$SSR / cake_cost$var$N
fit$var_ms_unscaled <- cake_cost$var$SSR.unscaled / cake_cost$var$N
fit$var_ms_unweighted <- cake_cost$var$SSR.unweighted / cake_cost$var$N
names(fit$var_ms_unweighted) <- names(fit$var_ms_unscaled) <-
names(fit$var_ms) <- FF$var$name
} else fit$var_ms <- fit$var_ms_unweighted <- fit$var_ms_unscaled <- NA
return(fit)
}
GetOptimiserSpecificSetup <- function(optimiser) {
switch(optimiser,
OLS = GetOlsSpecificSetup(),
IRLS = GetIrlsSpecificSetup(),
MCMC = GetMcmcSpecificSetup())
}
GetOptimisationRoutine <- function(optimiser) {
switch(optimiser,
OLS = GetOlsOptimisationRoutine(),
IRLS = GetIrlsOptimisationRoutine(),
MCMC = GetMcmcOptimisationRoutine())
}
GetOptimiserSpecificWrapUp <- function(optimiser) {
switch(optimiser,
OLS = GetOlsSpecificWrapUp(),
IRLS = GetIrlsSpecificWrapUp(),
MCMC = GetMcmcSpecificWrapUp())
}
|