1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
#$Id$
#
# Some of the CAKE R modules are based on mkin
# Modifications developed by Tessella for Syngenta: Copyright (C) 2011-2016 Syngenta
# Tessella Project Reference: 6245, 7247, 8361, 7414
# The CAKE R modules are free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Performs an iteratively-reweighted least squares fit on a given CAKE model.
# Remark: this function was originally based on the "mkinfit" function, version 0.1.
#
# cake.model: The model to perform the fit on (as generated by CakeModel.R).
# observed: Observation data to fit to.
# parms.ini: Initial values for the parameters being fitted.
# state.ini: Initial state (i.e. initial values for concentration, the dependent variable being modelled).
# lower: Lower bounds to apply to parameters.
# upper: Upper bound to apply to parameters.
# fixed_parms: A vector of names of parameters that are fixed to their initial values.
# fixed_initials: A vector of compartments with fixed initial concentrations.
# quiet: Whether the internal cost functions should execute more quietly than normal (less output).
# atol: The tolerance to apply to the ODE solver.
# sannMaxIter: The maximum number of iterations to apply to SANN processes.
# control: ...
# useExtraSolver: Whether to use the extra solver for this fit.
CakeIrlsFit <- function (cake.model,
observed,
parms.ini = rep(0.1, length(cake.model$parms)),
state.ini = c(100, rep(0, length(cake.model$diffs) - 1)),
lower = 0,
upper = Inf,
fixed_parms = NULL,
fixed_initials = names(cake.model$diffs)[-1],
quiet = FALSE,
atol=1e-6,
sannMaxIter = 10000,
control=list(),
useExtraSolver = FALSE,
...)
{
NAind <-which(is.na(observed$value))
mod_vars <- names(cake.model$diffs)
observed <- subset(observed, name %in% names(cake.model$map))
ERR <- rep(1,nrow(observed))
observed <- cbind(observed,err=ERR)
fitted_with_extra_solver <- 0
obs_vars = unique(as.character(observed$name))
if (is.null(names(parms.ini))) {
names(parms.ini) <- cake.model$parms
}
mkindiff <- function(t, state, parms) {
time <- t
diffs <- vector()
for (box in mod_vars) {
diffname <- paste("d", box, sep = "_")
diffs[diffname] <- with(as.list(c(time, state, parms)),
eval(parse(text = cake.model$diffs[[box]])))
}
return(list(c(diffs)))
}
if (is.null(names(state.ini))) {
names(state.ini) <- mod_vars
}
parms.fixed <- parms.ini[fixed_parms]
optim_parms <- setdiff(names(parms.ini), fixed_parms)
parms.optim <- parms.ini[optim_parms]
state.ini.fixed <- state.ini[fixed_initials]
optim_initials <- setdiff(names(state.ini), fixed_initials)
state.ini.optim <- state.ini[optim_initials]
state.ini.optim.boxnames <- names(state.ini.optim)
if (length(state.ini.optim) > 0) {
names(state.ini.optim) <- paste(names(state.ini.optim),
"0", sep = "_")
}
costFunctions <- CakeInternalCostFunctions(cake.model, state.ini.optim, state.ini.optim.boxnames,
state.ini.fixed, parms.fixed, observed, mkindiff, quiet, atol=atol)
############### Iteratively Reweighted Least Squares#############
## Start with no weighting
## a prefitting step since this is usually the most effective method
if(useExtraSolver)
{
pnames=names(c(state.ini.optim, parms.optim))
fn <- function(P){
names(P) <- pnames
FF<<-costFunctions$cost(P)
return(FF$model)}
a <- try(fit <- solnp(c(state.ini.optim, parms.optim),fun=fn,LB=lower,UB=upper,control=control),silent=TRUE)
fitted_with_extra_solver <- 1
if(class(a) == "try-error")
{
print('solnp fails, try PORT or other algorithm by users choice, might take longer time. Do something else!')
warning('solnp fails, switch to PORT or other algorithm by users choice')
## now using submethod already
a <- try(fit <- modFit(costFunctions$cost, c(state.ini.optim, parms.optim), lower = lower, upper = upper, method='Port',control=control))
fitted_with_extra_solver <- 0
if(class(a) == "try-error")
{
fit <- modFit(costFunctions$cost, c(state.ini.optim, parms.optim), lower = lower, upper = upper, method='L-BFGS-B',control=control)
}
}
}else{
# modFit parameter transformations can explode if you put in parameters that are equal to a bound, so we move them away by a tiny amount.
all.optim <- ShiftAwayFromBoundaries(c(state.ini.optim, parms.optim), lower, upper)
fit <- modFit(costFunctions$cost, all.optim, lower = lower,
upper = upper,control=control,...)
}
if(length(control)==0)
{
irls.control <- list(maxIter=10,tol=1e-05)
control <- list(irls.control=irls.control)
}else{
if(is.null(control$irls.control))
{
irls.control <- list(maxIter=10,tol=1e-05)
control <- list(irls.control=irls.control)
}
}
irls.control <- control$irls.control
maxIter <- irls.control$maxIter
tol <- irls.control$tol
####
if(length(cake.model$map)==1){
## there is only one parent just do one iteration:
maxIter <- 0
if(fitted_with_extra_solver==1)## managed to fit with extra solver
{
fit$ssr <- fit$values[length(fit$values)]
fit$residuals <-FF$residual$res
## mean square per variable
if (class(FF) == "modCost") {
names(fit$residuals) <- FF$residuals$name
fit$var_ms <- FF$var$SSR/FF$var$N
fit$var_ms_unscaled <- FF$var$SSR.unscaled/FF$var$N
fit$var_ms_unweighted <- FF$var$SSR.unweighted/FF$var$N
names(fit$var_ms_unweighted) <- names(fit$var_ms_unscaled) <-
names(fit$var_ms) <- FF$var$name
} else fit$var_ms <- fit$var_ms_unweighted <- fit$var_ms_unscaled <- NA
}
err1 <- sqrt(fit$var_ms_unweighted)
ERR <- err1[as.character(observed$name)]
observed$err <-ERR
}
niter <- 1
## insure one IRLS iteration
diffsigma <- 100
olderr <- rep(1,length(cake.model$map))
while(diffsigma>tol & niter<=maxIter)
{
if(fitted_with_extra_solver==1 && useExtraSolver)## managed to fit with extra solver
{
fit$ssr <- fit$values[length(fit$values)]
fit$residuals <-FF$residual$res
## mean square per variable
if (class(FF) == "modCost") {
names(fit$residuals) <- FF$residuals$name
fit$var_ms <- FF$var$SSR/FF$var$N
fit$var_ms_unscaled <- FF$var$SSR.unscaled/FF$var$N
fit$var_ms_unweighted <- FF$var$SSR.unweighted/FF$var$N
names(fit$var_ms_unweighted) <- names(fit$var_ms_unscaled) <-
names(fit$var_ms) <- FF$var$name
} else fit$var_ms <- fit$var_ms_unweighted <- fit$var_ms_unscaled <- NA
}
err <- sqrt(fit$var_ms_unweighted)
ERR <- err[as.character(observed$name)]
costFunctions$set.error(ERR)
diffsigma <- sum((err-olderr)^2)
cat("IRLS iteration at",niter, "; Diff in error variance ", diffsigma,"\n")
olderr <- err
if(useExtraSolver)
{
fitted_with_extra_solver <- 1
a <- try(fit <- solnp(fit$par,fun=fn,LB=lower,UB=upper,control=control),silent=TRUE)
if(class(a) == "try-error")
{
fitted_with_extra_solver <- 0
print('solnp fails during IRLS iteration, try PORT or other algorithm by users choice.This may takes a while. Do something else!') ## NOTE: because in kingui we switch off the warnings, we need to print out the message instead.
warning('solnp fails during IRLS iteration, switch to PORT or other algorithm by users choice')
fit <- modFit(costFunctions$cost, fit$par, lower = lower, upper = upper, method='Port',control=list())
}
}else{
# modFit parameter transformations can explode if you put in parameters that are equal to a bound, so we move them away by a tiny amount.
fit$par <- ShiftAwayFromBoundaries(fit$par, lower, upper)
fit <- modFit(costFunctions$cost, fit$par, lower = lower, upper = upper, control=control, ...)
}
niter <- niter+1
### If not converged, reweight and fit
}
if(fitted_with_extra_solver==1 && useExtraSolver){
## solnp used
optimmethod <- 'solnp'
fit$ssr <- fit$values[length(fit$values)]
fit$residuals <-FF$residual$res
## mean square per varaible
if (class(FF) == "modCost") {
names(fit$residuals) <- FF$residuals$name
fit$var_ms <- FF$var$SSR/FF$var$N
fit$var_ms_unscaled <- FF$var$SSR.unscaled/FF$var$N
fit$var_ms_unweighted <- FF$var$SSR.unweighted/FF$var$N
names(fit$var_ms_unweighted) <- names(fit$var_ms_unscaled) <-
names(fit$var_ms) <- FF$var$name
} else fit$var_ms <- fit$var_ms_unweighted <- fit$var_ms_unscaled <- NA
np <- length(c(state.ini.optim, parms.optim))
fit$rank <- np
fit$df.residual <- length(fit$residuals) - fit$rank
# solnp can return an incorrect Hessian, so we use another fitting method at the optimised point to determine the Hessian
fitForHessian <- modFit(costFunctions$cost, fit$par, lower=lower, upper=upper, method='L-BFGS-B', control=list())
fit$solnpHessian <- fit$hessian
fit$hessian <- fitForHessian$hessian
}
###########################################
fit$mkindiff <- mkindiff
fit$map <- cake.model$map
fit$diffs <- cake.model$diffs
out_predicted <- costFunctions$get.predicted()
predicted_long <- wide_to_long(out_predicted, time = "time")
fit$predicted <- out_predicted
fit$start <- data.frame(initial = c(state.ini.optim, parms.optim))
fit$start$type = c(rep("state", length(state.ini.optim)),
rep("deparm", length(parms.optim)))
fit$start$lower <- lower
fit$start$upper <- upper
fit$fixed <- data.frame(value = c(state.ini.fixed, parms.fixed))
fit$fixed$type = c(rep("state", length(state.ini.fixed)),
rep("deparm", length(parms.fixed)))
fit$errmin <- CakeChi2(cake.model, observed, predicted_long, obs_vars, parms.optim, state.ini.optim, state.ini, parms.ini, fit$fixed)
parms.all = c(fit$par, parms.fixed, state.ini)
fit$penalties <- CakePenaltiesLong(parms.all, out_predicted, observed)
fit$distimes <- data.frame(DT50 = rep(NA, length(obs_vars)),
DT90 = rep(NA, length(obs_vars)), row.names = obs_vars)
fit$extraDT50<- data.frame(k1 = rep(NA, length(names(cake.model$map))), k2 = rep(NA, length(names(cake.model$map))), row.names = names(cake.model$map))
for (compartment.name in names(cake.model$map)) {
type = names(cake.model$map[[compartment.name]])[1]
fit$distimes[compartment.name, ] = CakeDT(type,compartment.name,parms.all,sannMaxIter)
fit$extraDT50[compartment.name, ] = CakeExtraDT(type, compartment.name, parms.all)
}
fit$ioreRepDT = CakeIORERepresentativeDT("Parent", parms.all)
fit$fomcRepDT = CakeFOMCBackCalculatedDT(parms.all)
data <- merge(observed, predicted_long, by = c("time", "name"))
names(data) <- c("time", "variable", "observed","err-var", "predicted")
data$residual <- data$observed - data$predicted
data$variable <- ordered(data$variable, levels = obs_vars)
fit$data <- data[order(data$variable, data$time), ]
fit$costFunctions <- costFunctions
fit$upper <- upper
fit$lower <- lower
fit$atol <- atol
class(fit) <- c("CakeFit", "mkinfit", "modFit")
return(fit)
}
|