summaryrefslogtreecommitdiff
path: root/CakeMcmcFit.R
blob: f9a340e846bc5f79372e4071dedf4a5b6581837b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# $Id$
# The CAKE R modules are based on mkin, 
# Based on mcmckinfit as modified by Bayer
# Modifications developed by Tessella Plc for Syngenta: Copyright (C) 2011  Syngenta
# Author: Rob Nelson, Tamar Christina
# Tessella Project Reference: 6245, 7247

#    This program is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
# 
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
# 
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <http://www.gnu.org/licenses/>.”

CakeMcmcFit <- function (mkinmod, observed, parms.ini = rep(0.1, length(mkinmod$parms)), 
    state.ini = c(100, rep(0, length(mkinmod$diffs) - 1)), lower = 0, 
    upper = Inf, fixed_parms = NULL, fixed_initials = names(mkinmod$diffs)[-1], 
    plot = FALSE, quiet = FALSE, err = NULL, weight = "none", 
    scaleVar = FALSE, commonsigma=FALSE,jump = NULL,prior = NULL,
    wvar0=0.1,niter = 1000, 
    outputlength = niter, burninlength = 0, updatecov = niter, 
    ntrydr = 1, drscale = NULL, verbose = TRUE,fitstart=TRUE,seed=NULL,atol=1e-6,
    sannMaxIter = 10000, control=list(),
    useSolnp = FALSE, method='L-BFGS-B',...) 
{

    NAind <-which(is.na(observed$value))
    mod_vars <- names(mkinmod$diffs)
    observed <- subset(observed, name %in% names(mkinmod$map))
    ERR <- rep(1,nrow(observed))
    observed <- cbind(observed,err=ERR)
    obs_vars = unique(as.character(observed$name))
    if (is.null(names(parms.ini))) 
        names(parms.ini) <- mkinmod$parms
    mkindiff <- function(t, state, parms) {
        time <- t
        diffs <- vector()
        for (box in mod_vars) {
            diffname <- paste("d", box, sep = "_")
            diffs[diffname] <- with(as.list(c(time, state, parms)), 
                eval(parse(text = mkinmod$diffs[[box]])))
        }
        return(list(c(diffs)))
    }
    if (is.null(names(state.ini))) 
        names(state.ini) <- mod_vars
    parms.fixed <- parms.ini[fixed_parms]
    optim_parms <- setdiff(names(parms.ini), fixed_parms)
    parms.optim <- parms.ini[optim_parms]
    state.ini.fixed <- state.ini[fixed_initials]
    optim_initials <- setdiff(names(state.ini), fixed_initials)
    state.ini.optim <- state.ini[optim_initials]
    flag <- 0
    state.ini.optim.boxnames <- names(state.ini.optim)
    if (length(state.ini.optim) > 0) {
        names(state.ini.optim) <- paste(names(state.ini.optim), 
            "0", sep = "_")
    }
   
   	costFunctions <- CakeInternalCostFunctions(mkinmod, state.ini.optim, state.ini.optim.boxnames, 
                        state.ini.fixed, parms.fixed, observed, mkindiff, scaleVar, quiet, atol=atol)
	bestIteration <- -1;
	costWithStatus <- function(P, ...){
		r <- costFunctions$cost(P)
		if(r$cost == costFunctions$get.best.cost()) {
			bestIteration<<-costFunctions$get.calls();
			 cat(' MCMC best so far: c', r$cost, 'it:', bestIteration, '\n')
		}
		cat("MCMC Call no.", costFunctions$get.calls(), '\n')
		return(r)
	}

    # Set the seed
    if ( is.null(seed) ) {
      # No seed so create a random one so there is something to report
      seed = runif(1,0,2^31-1)
    }
    seed = as.integer(seed)
    set.seed(seed)
    
    if(fitstart==TRUE)
      {
     ## ############# Get Initial Paramtervalues   #############
    ## Start with no weighting
    
    if(useSolnp)
    {
        pnames=names(c(state.ini.optim, parms.optim))
        fn <- function(P){
            names(P) <- pnames
            FF<<-cost(P)
            return(FF$model)}
        a <- try(fit <- solnp(c(state.ini.optim, parms.optim),fun=fn,LB=lower,UB=upper,control=control),silent=TRUE)
        flag <- 1
        optimmethod <- 'solnp'
        if(class(a) == "try-error")
        {
            print('solnp fails, try PORT or other algorithm by users choice, might take longer time. Do something else!')
            warning('solnp fails, switch to  PORT or other algorithm by users choice')
            a <- try(fit <- modFit(costFunctions$cost, c(state.ini.optim, parms.optim), lower = lower, upper = upper, method='Port',control=control))
            flag <- 0
            
            if(class(a) == "try-error")
            {
                fit <- modFit(costFunctions$cost, c(state.ini.optim, parms.optim), lower = lower, upper = upper, method=method,control=control)
            }
            ## now using submethod already
        }
    }
    else
    {
        fit <- modFit(costFunctions$cost, c(state.ini.optim, parms.optim), lower = lower, 
                          upper = upper,...)
	}
    
    if(commonsigma==TRUE){
      #observed$err <- rep(1,nrow(observed))
      if(flag==1 && useSolnp)## fit from solnp
      {
          ## run a small loop with 'Marq' or some other method
          fit <- modFit(costFunctions$cost, fit$par, lower = lower, upper = upper, method='Port',control=control)
      }
      cov0 <- summary(fit)$cov.scaled*2.4^2/length(fit$par)
	  costFunctions$set.calls(0); costFunctions$reset.best.cost()
      res <- modMCMC(costWithStatus,fit$par,...,jump=cov0,lower=lower,upper=upper,prior=prior,var0=var0,wvar0=wvar0,niter=niter,outputlength = outputlength, burninlength = burninlength, updatecov = updatecov,ntrydr=ntrydr,drscale=drscale,verbose=verbose)
      #res <- modMCMC(cost,fit$par,lower=lower,upper=upper,niter=niter)
    }else{
      ## ############## One reweighted estimation ############################ 
      ## Estimate the error variance(sd)     
      tmpres <- fit$residuals
      oldERR <- observed$err
      err <- rep(NA,length(mod_vars))
      for(i in 1:length(mod_vars))
        {
          box <- mod_vars[i]
          ind <- which(names(tmpres)==box)
          tmp <- tmpres[ind]
          err[i] <- sd(tmp)
        }
      names(err) <- mod_vars
      ERR <- err[as.character(observed$name)]
      observed$err <-ERR
	  costFunctions$set.error(ERR)
      if(flag==1 && useSolnp)## fit from solnp
      {
          fit$ssr <- fit$values[length(fit$values)]
          fit$residuals <-FF$residual$res
          ## mean square per varaible
          if (class(FF) == "modCost") {
              names(fit$residuals)  <- FF$residuals$name
              fit$var_ms            <- FF$var$SSR/FF$var$N
              fit$var_ms_unscaled   <- FF$var$SSR.unscaled/FF$var$N
              fit$var_ms_unweighted <- FF$var$SSR.unweighted/FF$var$N
      
              names(fit$var_ms_unweighted) <- names(fit$var_ms_unscaled) <-
                  names(fit$var_ms) <- FF$var$name
          } else fit$var_ms <- fit$var_ms_unweighted <- fit$var_ms_unscaled <- NA
      }
      olderr <- rep(1,length(mod_vars))
      diffsigma <- sum((err-olderr)^2)
      ## At least do one iteration step to get a weighted LS
      fit <- modFit(costFunctions$cost, fit$par, lower = lower, upper = upper, ...)
      ## Use this as the Input for MCMC algorithm
      ## ##########################
	  fs <- summary(fit)
      cov0 <- if(all(is.na(fs$cov.scaled))) NULL else fs$cov.scaled*2.4^2/length(fit$par)
      var0 <- fit$var_ms_unweighted
	  costFunctions$set.calls(0); costFunctions$reset.best.cost()
      res <- modMCMC(costWithStatus,fit$par,...,jump=cov0,lower=lower,upper=upper,prior=prior,var0=var0,wvar0=wvar0,niter=niter,outputlength = outputlength, burninlength = burninlength, updatecov = updatecov,ntrydr=ntrydr,drscale=drscale,verbose=verbose)
   
    }
   }else {
		stop('fitstart=FALSE code removed until needed')
	}
    # Construct the fit object to return
    fit$start <- data.frame(initial = c(state.ini.optim, parms.optim))
    fit$start$type = c(rep("state", length(state.ini.optim)), 
        rep("deparm", length(parms.optim)))
    fit$start$lower <- lower
    fit$start$upper <- upper
    fit$fixed <- data.frame(value = c(state.ini.fixed, parms.fixed))
    fit$fixed$type = c(rep("state", length(state.ini.fixed)), 
        rep("deparm", length(parms.fixed)))

    fit$mkindiff <- mkindiff
    fit$map <- mkinmod$map
    fit$diffs <- mkinmod$diffs

    # mkin_long_to_wide does not handle ragged data
    fit$observed <- reshape(observed, direction="wide", timevar="name", idvar="time")
    #names(fit$observed) <- c("time", as.vector(unique(observed$name)))
    fns <- function(str) {
      fields <- strsplit(str, "\\.")[[1]]
      if (fields[1] == "value") {
         return(fields[2])
      }
      else {
         return(str)
      }
    }
    names(fit$observed) <- sapply(names(fit$observed), fns)
   
   # Replace mean from modFit with mean from modMCMC
   fnm <- function(x) mean(res$pars[,x])
   fit$par <- sapply(dimnames(res$pars)[[2]],fnm)
   fit$bestpar <- res$bestpar
   fit$costfn <- costWithStatus
   
   # Disappearence times
   parms.all <- c(fit$par, parms.fixed)
   obs_vars = unique(as.character(observed$name))
   fit$distimes <- data.frame(DT50 = rep(NA, length(obs_vars)), 
        DT90 = rep(NA, length(obs_vars)), row.names = obs_vars)
   fit$extraDT50<- data.frame(DT50 = rep(NA, 2), row.names = c("k1", "k2"))     
    for (obs_var in obs_vars) {
        type = names(mkinmod$map[[obs_var]])[1]
        fit$distimes[obs_var, ] = CakeDT(type,obs_var,parms.all,sannMaxIter)
    }

    fit$extraDT50[ ,c("DT50")] = CakeExtraDT(type,parms.all)
    
   # Fits to data
   odeini <- state.ini
   odeparms <- parms.all
   # If this step modelled the start amount, include it. Lookup in vectors returns NA not null if missing
   if(!is.na(odeparms["Parent_0"])) { odeini['Parent'] = odeparms["Parent_0"] }
   
   # Solve the system
   evalparse <- function(string)
   {
      eval(parse(text=string), as.list(c(odeparms, odeini)))
   }
  
   # Ensure initial state is at time 0
   obstimes <- unique(c(0,observed$time))

   out <- ode(
      y = odeini,
      times = obstimes,
      func = mkindiff, 
      parms = odeparms,
    )
    
   # Output transformation for models with unobserved compartments like SFORB
   out_transformed <- data.frame(time = out[,"time"])
   for (var in names(mkinmod$map)) {
      if(length(mkinmod$map[[var]]) == 1) {
         out_transformed[var] <- out[, var]
      } else {
         out_transformed[var] <- rowSums(out[, mkinmod$map[[var]]])
      }
   }
   fit$predicted <- out_transformed
   fit$penalties <- CakePenaltiesLong(odeparms, out_transformed, observed)

   predicted_long <- mkin_wide_to_long(out_transformed,time="time")
   obs_vars = unique(as.character(observed$name))
   fit$errmin <- CakeChi2(mkinmod, observed, predicted_long, obs_vars, parms.optim, state.ini.optim, state.ini, parms.ini)

   data<-observed
   data$err<-rep(NA,length(data$time))
   data<-merge(data, predicted_long, by=c("time","name"))
   names(data)<-c("time", "variable", "observed","err-var", "predicted")
   data$residual<-data$observed-data$predicted
   data$variable <- ordered(data$variable, levels = obs_vars)
   fit$data <- data[order(data$variable, data$time), ]

   sq <- data$residual * data$residual
   fit$ssr <- sum(sq)
   
   fit$seed = seed
   
    fit$res <- res
    class(fit) <- c("CakeMcmcFit", "mkinfit", "modFit")
    return(fit)
}


# Summarise a fit
summary.CakeMcmcFit <- function(object, data = TRUE, distimes = TRUE, halflives = TRUE, ff = TRUE, cov = FALSE,...) {
  param  <- object$par
  pnames <- names(param)
  p      <- length(param)
  #covar  <- try(solve(0.5*object$hessian), silent = TRUE)   # unscaled covariance
  mcmc <- object$res
  covar <- cov(mcmc$pars)

  rdf    <- object$df.residual
  
    message <- "ok"
    rownames(covar) <- colnames(covar) <-pnames
    
    #se     <- sqrt(diag(covar) * resvar)
    fnse <- function(x) sd(mcmc$pars[,x])	#/sqrt(length(mcmc$pars[,x]))
    se <- sapply(dimnames(mcmc$pars)[[2]],fnse)
    
    tval      <- param / se

  if (!all(object$start$lower >=0)) {
    message <- "Note that the one-sided t-test may not be appropriate if
      parameter values below zero are possible."
    warning(message)
  } else message <- "ok"

    # Filter the values for t-test, only apply t-test to k-values  
    t.names  <- grep("k(\\d+)|k_(.*)", names(tval), value = TRUE)
    t.rest   <- setdiff(names(tval), t.names)
    t.values <- c(tval)
    t.values[t.rest] <- NA
    t.result <- pt(t.values, rdf, lower.tail = FALSE)
    
    # Now set the values we're not interested in for the lower 
    # and upper bound we're not interested in to NA
    t.param = c(param)
    t.param[t.names] <- NA
    # calculate the 90% confidence interval
    alpha <- 0.10
    lci90 <- t.param + qt(alpha/2,rdf)*se
    uci90 <- t.param + qt(1-alpha/2,rdf)*se
    
    # calculate the 95% confidence interval
    alpha <- 0.05
    lci95 <- t.param + qt(alpha/2,rdf)*se
    uci95 <- t.param + qt(1-alpha/2,rdf)*se

    param <- cbind(param, se, tval, t.result, lci90, uci90, lci95, uci95)
    dimnames(param) <- list(pnames, c("Estimate", "Std. Error",
                                    "t value", "Pr(>t)", "Lower CI (90%)", "Upper CI (90%)", "Lower CI (95%)", "Upper CI (95%)"))
       
   # Residuals from mean of MCMC fit
   resvar <- object$ssr/ rdf
   modVariance <- object$ssr / length(object$data$residual)
  
   ans <- list(residuals = object$data$residuals,
                residualVariance = resvar,
                sigma = sqrt(resvar),
                modVariance = modVariance,
                df = c(p, rdf), cov.unscaled = covar,
                cov.scaled = covar * resvar,
                info = object$info, niter = object$iterations,
                stopmess = message,
                par = param)
    
  ans$diffs <- object$diffs
  ans$data <- object$data
  ans$additionalstats = CakeAdditionalStats(object$data)
  ans$seed <- object$seed

  ans$start <- object$start
  ans$fixed <- object$fixed
  ans$errmin <- object$errmin 
  if(distimes) ans$distimes <- object$distimes
  if(halflives) ans$halflives <- object$halflives
  if(ff) ans$ff <- object$ff
  if(length(object$SFORB) != 0) ans$SFORB <- object$SFORB
  class(ans) <- c("summary.CakeFit","summary.mkinfit", "summary.modFit") 
  return(ans)  
}

Contact - Imprint