1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
# Some of the CAKE R modules are based on mkin,
# Based on mcmckinfit as modified by Bayer
# Modifications developed by Hybrid Intelligence (formerly Tessella), part of
# Capgemini Engineering, for Syngenta, Copyright (C) 2011-2022 Syngenta
# Tessella Project Reference: 6245, 7247, 8361, 7414, 10091
# The CAKE R modules are free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Performs an Markov chain Monte Carlo least squares fit on a given CAKE model.
#
# cake.model: The model to perform the fit on (as generated by CakeModel.R).
# observed: Observation data to fit to.
# parms.ini: Initial values for the parameters being fitted.
# state.ini: Initial state (i.e. initial values for concentration, the dependent variable being modelled).
# lower: Lower bounds to apply to parameters.
# upper: Upper bound to apply to parameters.
# fixed_parms: A vector of names of parameters that are fixed to their initial values.
# fixed_initials: A vector of compartments with fixed initial concentrations.
# quiet: Whether the internal cost functions should execute more quietly than normal (less output).
# niter: The number of MCMC iterations to apply.
# atol: The tolerance to apply to the ODE solver.
# dfopDtMaxIter: The maximum number of iterations to apply to DFOP DT calculation.
# control: ...
# useExtraSolver: Whether to use the extra solver for this fit (only used for the initial first fit).
CakeMcmcFit <- function(cake.model,
observed,
parms.ini,
state.ini,
lower,
upper,
fixed_parms = NULL,
fixed_initials,
quiet = FALSE,
niter = 1000,
verbose = TRUE,
seed = NULL,
atol = 1e-6,
dfopDtMaxIter = 10000,
control = list(),
useExtraSolver = FALSE) {
fit <- CakeFit("MCMC",
cake.model,
observed,
parms.ini,
state.ini,
lower,
upper,
fixed_parms,
fixed_initials,
quiet,
niter = niter,
verbose = verbose,
seed = seed,
atol = atol,
dfopDtMaxIter = dfopDtMaxIter,
control = control,
useExtraSolver = useExtraSolver)
return(fit)
}
GetMcmcSpecificSetup <- function() {
return(function(
cake.model,
state.ini.optim,
state.ini.optim.boxnames,
state.ini.fixed,
parms.fixed,
observed,
mkindiff,
quiet,
atol,
solution,
...) {
seed <- list(...)$seed
costFunctions <- CakeInternalCostFunctions(cake.model, state.ini.optim, state.ini.optim.boxnames, state.ini.fixed,
parms.fixed, observed, mkindiff = mkindiff, quiet, atol = atol, solution = solution)
bestIteration <<- -1;
costWithStatus <- function(P, ...) {
r <- costFunctions$cost(P)
if (r$cost == costFunctions$get.best.cost()) {
bestIteration <<- costFunctions$get.calls();
cat(' MCMC best so far: c', r$cost, 'it:', bestIteration, '\n')
}
arguments <- list(...)
if (costFunctions$get.calls() <= arguments$maxCallNo) {
cat("MCMC Call no.", costFunctions$get.calls(), '\n')
}
return(r)
}
# Set the seed
if (is.null(seed)) {
# No seed so create a random one so there is something to report
seed <- runif(1, 0, 2 ^ 31 - 1)
}
seed <- as.integer(seed)
set.seed(seed)
return(list(costFunctions = costFunctions, costWithStatus = costWithStatus, maxIter = NULL, tol = NULL, seed = seed))
})
}
GetMcmcOptimisationRoutine <- function() {
return(function(costFunctions, costForExtraSolver, useExtraSolver, parms, lower, upper, control, ...) {
mcmcArgs <- list(...)
cake.model <- mcmcArgs$cake.model
costWithStatus <- mcmcArgs$costWithStatus
observed <- mcmcArgs$observed
niter <- mcmcArgs$niter
verbose <- mcmcArgs$verbose
# Runs a pre-fit with no weights first, followed by a weighted step (extra solver with first, not with second)
# Run optimiser, no weighting
fitStepResult <- RunFitStep(costFunctions$cost, costForExtraSolver, useExtraSolver, parms, lower, upper, control)
fit <- fitStepResult$fit
fitted_with_extra_solver <- fitStepResult$fitted_with_extra_solver
# Process extra solver output if it was used
if (fitted_with_extra_solver) {
fit <- GetFitValuesAfterExtraSolver(fit, FF)
}
# One reweighted estimation
# Estimate the error variance(sd)
tmpres <- fit$residuals
oldERR <- observed$err
err <- rep(NA, length(cake.model$map))
for (i in 1:length(cake.model$map)) {
box <- names(cake.model$map)[i]
ind <- which(names(tmpres) == box)
tmp <- tmpres[ind]
err[i] <- sd(tmp)
}
names(err) <- names(cake.model$map)
ERR <- err[as.character(observed$name)]
observed$err <- ERR
costFunctions$set.error(ERR)
olderr <- rep(1, length(cake.model$map))
diffsigma <- sum((err - olderr) ^ 2)
## At least do one iteration step to get a weighted LS
fit <- modFit(f = costFunctions$cost, p = fit$par, lower = lower, upper = upper)
# Run MCMC optimiser with output from weighted fit
# Apply iterative re-weighting here (iterations fixed to 1 for now):
# Do modMCMC as below, we should also pass in the final priors for subsequent iterations
# Use modMCMC average as input to next modMCMC run (as done in block 3 to get final parameters)
# use errors from previous step as inputs to modMCMC cov0 and var0 at each iteration
fs <- summary(fit)
cov0 <- if (all(is.na(fs$cov.scaled))) NULL else fs$cov.scaled * 2.4 ^ 2 / length(fit$par)
var0 <- fit$var_ms_unweighted
costFunctions$set.calls(0);
costFunctions$reset.best.cost()
res <- modMCMC(f = costWithStatus, p = fit$par, maxCallNo = niter, jump = cov0, lower = lower, upper = upper, prior = NULL, var0 = var0, wvar0 = 0.1, niter = niter, outputlength = niter, burninlength = 0, updatecov = niter, ntrydr = 1, drscale = NULL, verbose = verbose)
return(list(fit = fitStepResult$fit, fitted_with_extra_solver = fitStepResult$fitted_with_extra_solver, res = res))
})
}
GetMcmcSpecificWrapUp <- function() {
return(function(fit, ...) {
args <- list(...)
res <- args$res
seed <- args$seed
costWithStatus <- args$costWithStatus
observed <- args$observed
parms.fixed <- args$parms.fixed
# Replace mean from modFit with mean from modMCMC
fnm <- function(x) mean(res$pars[, x])
fit$par <- sapply(dimnames(res$pars)[[2]], fnm)
fit$bestpar <- res$bestpar
fit$costfn <- costWithStatus
parms.all <- c(fit$par, parms.fixed)
data <- observed
data$err <- rep(NA, length(data$time))
fit$seed <- seed
fit$res <- res
np <- length(parms.all)
fit$rank <- np
fit$df.residual <- length(fit$residuals) - fit$rank
class(fit) <- c("CakeMcmcFit", "mkinfit", "modFit") # Note different class to other optimisers
return(list(fit = fit, parms.all = parms.all, data = data))
})
}
# Summarise a fit
# The MCMC summary is separate from the others due to the difference in the outputs of the modMCMC and modFit.
summary.CakeMcmcFit <- function(object, data = TRUE, distimes = TRUE, halflives = TRUE, ff = TRUE, cov = FALSE, ...) {
param <- object$par
pnames <- names(param)
p <- length(param)
#covar <- try(solve(0.5*object$hessian), silent = TRUE) # unscaled covariance
mcmc <- object$res
covar <- cov(mcmc$pars)
rdf <- object$df.residual
message <- "ok"
rownames(covar) <- colnames(covar) <- pnames
#se <- sqrt(diag(covar) * resvar)
fnse <- function(x) sd(mcmc$pars[, x]) #/sqrt(length(mcmc$pars[,x]))
se <- sapply(dimnames(mcmc$pars)[[2]], fnse)
tval <- param / se
if (!all(object$start$lower >= 0)) {
message <- "Note that the one-sided t-test may not be appropriate if
parameter values below zero are possible."
warning(message)
} else message <- "ok"
# Filter the values for t-test, only apply t-test to k-values
t.names <- grep("k(\\d+)|k_(.*)", names(tval), value = TRUE)
t.rest <- setdiff(names(tval), t.names)
t.values <- c(tval)
t.values[t.rest] <- NA
t.result <- pt(t.values, rdf, lower.tail = FALSE)
# Now set the values we're not interested in for the lower
# and upper bound we're not interested in to NA
t.param <- c(param)
t.param[t.names] <- NA
# calculate the 90% confidence interval
alpha <- 0.10
lci90 <- t.param + qt(alpha / 2, rdf) * se
uci90 <- t.param + qt(1 - alpha / 2, rdf) * se
# calculate the 95% confidence interval
alpha <- 0.05
lci95 <- t.param + qt(alpha / 2, rdf) * se
uci95 <- t.param + qt(1 - alpha / 2, rdf) * se
param <- cbind(param, se, tval, t.result, lci90, uci90, lci95, uci95)
dimnames(param) <- list(pnames, c("Estimate", "Std. Error",
"t value", "Pr(>t)", "Lower CI (90%)", "Upper CI (90%)", "Lower CI (95%)", "Upper CI (95%)"))
# Residuals from mean of MCMC fit
resvar <- object$ssr / rdf
modVariance <- object$ssr / length(object$data$residual)
ans <- list(ssr = object$ssr,
residuals = object$data$residuals,
residualVariance = resvar,
sigma = sqrt(resvar),
modVariance = modVariance,
df = c(p, rdf), cov.unscaled = covar,
cov.scaled = covar * resvar,
info = object$info, niter = object$iterations,
stopmess = message,
par = param)
ans$diffs <- object$diffs
ans$data <- object$data
ans$additionalstats <- CakeAdditionalStats(object$data)
ans$seed <- object$seed
ans$start <- object$start
ans$fixed <- object$fixed
ans$errmin <- object$errmin
ans$penalties <- object$penalties
if (distimes) {
ans$distimes <- object$distimes
ans$extraDT50 <- object$extraDT50
ans$ioreRepDT <- object$ioreRepDT
ans$fomcRepDT <- object$fomcRepDT
}
if (halflives) ans$halflives <- object$halflives
if (ff) ans$ff <- object$ff
class(ans) <- c("summary.CakeFit", "summary.mkinfit", "summary.modFit")
return(ans)
}
|