1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
#$Id$
# Generates model curves so the GUI can plot them. Used when all params are fixed so there was no fit
# Some of the CAKE R modules are based on mkin
# Based on code in IRLSkinfit
# Modifications developed by Hybrid Intelligence (formerly Tessella), part of
# Capgemini Engineering, for Syngenta, Copyright (C) 2011-2022 Syngenta
# Tessella Project Reference: 6245, 7247, 8361, 7414, 10091
# The CAKE R modules are free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
CakeNullPlot <- function(model, parms.ini, state.ini, observed, xlim = range(observed$time),
digits = max(3, getOption("digits") - 3), dfopDtMaxIter = 10000, atol = 1e-6, ...)
{
# Print the fixed values
fixed <- data.frame(value = c(state.ini, parms.ini))
fixed$type = c(rep("state", length(state.ini)), rep("deparm", length(parms.ini)))
cat("\nFixed parameter values:\n")
print(fixed)
parms.all = c(state.ini, parms.ini)
# Print disappearance times
obs_vars = unique(as.character(observed$name))
distimes <- data.frame(DT50 = rep(NA, length(obs_vars)),
DT90 = rep(NA, length(obs_vars)), row.names = obs_vars)
extraDT50<- data.frame(k1 = rep(NA, length(obs_vars)), k2 = rep(NA, length(obs_vars)), row.names = obs_vars)
for (obs_var in obs_vars) {
type = names(model$map[[obs_var]])[1]
if(exists("DT50")) distimes[obs_var, ] = c(DT50, DT90)
distimes[obs_var, ] = CakeDT(type,obs_var,parms.all,dfopDtMaxIter)
extraDT50[obs_var, ] = CakeExtraDT(type, obs_var, parms.all)
}
cat("\nEstimated disappearance times:\n")
print(distimes, digits=digits,...)
cat("\nHalf Lives for Extra k values:\n")
print(extraDT50, digits=digits,...)
ioreRepDT = CakeIORERepresentativeDT("Parent", parms.all)
printIoreRepDT <- !is.null(ioreRepDT)
if (printIoreRepDT){
cat("\nRepresentative Half Life for IORE:", format(signif(ioreRepDT, digits)))
}
cat("\n")
fomcRepDT = CakeFOMCBackCalculatedDT(parms.all)
printFomcRepDT <- !is.null(fomcRepDT)
if (printIoreRepDT){
cat("\nBack-calculated Half Life for FOMC:", format(signif(fomcRepDT, digits)))
}
cat("\n")
# Plot the model
outtimes <- seq(0, xlim[2], length.out=CAKE.plots.resolution)
odeini <- state.ini
odenames <- model$parms
odeparms <- parms.ini
# Solve the system
evalparse <- function(string)
{
eval(parse(text=string), as.list(c(odeparms, odeini)))
}
mod_vars <- names(model$diffs)
mkindiff <- function(t, state, parms) {
time <- t
diffs <- vector()
for (box in mod_vars) {
diffname <- paste("d", box, sep = "_")
diffs[diffname] <- with(as.list(c(time, state, parms)),
eval(parse(text = model$diffs[[box]])))
}
return(list(c(diffs)))
}
# Ensure initial state is at time 0
obstimes <- unique(c(0,observed$time))
odeini <- AdjustOdeInitialValues(odeini, model, odeparms)
# Solve at observation times
out <- ode(y = odeini, times = obstimes, func = mkindiff, parms = odeparms, atol = atol)
out_transformed <- PostProcessOdeOutput(out, model, atol)
predicted_long <- wide_to_long(out_transformed,time="time")
# Calculate chi2 error levels according to FOCUS (2006)
errmin<-CakeChi2(model, observed, predicted_long, obs_vars, c(), c(), state.ini, parms.ini, fixed)
cat("\nChi2 error levels in percent:\n")
errmin$err.min <- 100 * errmin$err.min
print(errmin, digits=digits,...)
# Fit to data
data<-observed
data$err<-rep(NA,length(data$time))
data<-merge(data, predicted_long, by=c("time","name"))
names(data)<-c("time", "variable", "observed","err-var", "predicted")
data$residual<-data$observed-data$predicted
data<-data[order(data$variable,data$time),]
cat("\nData:\n")
print(format(data, digits = digits, scientific = FALSE,...), row.names = FALSE)
additionalStats <- CakeAdditionalStats(data)
cat("\nAdditional Stats:\n");
print(additionalStats, digits = digits, ...)
# Solve at output times
out <- ode(
y = odeini,
times = outtimes,
func = mkindiff,
parms = odeparms)
out_transformed <- PostProcessOdeOutput(out, model, atol)
cat("\n<PLOT MODEL START>\n")
print(out_transformed)
cat("<PLOT MODEL END>\n")
}
|