summaryrefslogtreecommitdiff
path: root/CakeOlsFit.R
blob: 2b8e736dc46247ec33655c268c79ae47d15c00c4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Originally: mkinfit.R 87 2010-12-09 07:31:59Z jranke $

# Based on code in mkinfit
# Portions Johannes Ranke 2010
# Contact: mkin-devel@lists.berlios.de
# The summary function is an adapted and extended version of summary.modFit
# from the FME package, v 1.1 by Soetart and Petzoldt, which was in turn
# inspired by summary.nls.lm

# Modifications developed by Tessella for Syngenta: Copyright (C) 2011-2016 Syngenta

#    The CAKE R modules are free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
# 
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
# 
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <http://www.gnu.org/licenses/>.


# Performs an ordinary least squares fit on a given CAKE model.
#
# cake.model: The model to perform the fit on (as generated by CakeModel.R).
# observed: Observation data to fit to.
# parms.ini: Initial values for the parameters being fitted.
# state.ini: Initial state (i.e. initial values for concentration, the dependent variable being modelled).
# lower: Lower bounds to apply to parameters.
# upper: Upper bound to apply to parameters.
# fixed_parms: A vector of names of parameters that are fixed to their initial values.
# fixed_initials: A vector of compartments with fixed initial concentrations.
# quiet: Whether the internal cost functions should execute more quietly than normal (less output).
# atol: The tolerance to apply to the ODE solver.
# sannMaxIter: The maximum number of iterations to apply to SANN processes.
CakeOlsFit <- function(cake.model, 
                       observed,
                       parms.ini = rep(0.1, length(cake.model$parms)),
                       state.ini = c(100, rep(0, length(cake.model$diffs) - 1)), 
                       lower = 0, 
                       upper = Inf,
                       fixed_parms = NULL,
                       fixed_initials = names(cake.model$diffs)[-1],
                       quiet = FALSE,
                       atol = 1e-6,
                       sannMaxIter = 10000,
                       ...)
{
  mod_vars <- names(cake.model$diffs)
  # Subset dataframe with mapped (modelled) variables
  observed <- subset(observed, name %in% names(cake.model$map))
  # Get names of observed variables
  obs_vars = unique(as.character(observed$name))
  
  # Name the parameters if they are not named yet
  if(is.null(names(parms.ini))) names(parms.ini) <- cake.model$parms
  
  # Name the inital parameter values if they are not named yet
  if(is.null(names(state.ini))) names(state.ini) <- mod_vars
  
  # Parameters to be optimised
  parms.fixed <- parms.ini[fixed_parms]
  optim_parms <- setdiff(names(parms.ini), fixed_parms)
  parms.optim <- parms.ini[optim_parms]
  
  state.ini.fixed <- state.ini[fixed_initials]
  optim_initials <- setdiff(names(state.ini), fixed_initials)
  state.ini.optim <- state.ini[optim_initials]
  state.ini.optim.boxnames <- names(state.ini.optim)
  if(length(state.ini.optim) > 0) {
    names(state.ini.optim) <- paste(names(state.ini.optim), "0", sep="_")
  }
  
  # Decide if the solution of the model can be based on a simple analytical
  # formula, the spectral decomposition of the matrix (fundamental system)
  # or a numeric ode solver from the deSolve package
  if (length(cake.model$map) == 1) {
    solution = "analytical"
  } else {
    solution = "deSolve"
  }
  
  # Create a function calculating the differentials specified by the model
  # if necessary
  if(solution == "deSolve") {
    mkindiff <- function(t, state, parms) {
      time <- t
      diffs <- vector()
      for (box in mod_vars)
      {
        diffname <- paste("d", box, sep="_")      
        diffs[diffname] <- with(as.list(c(time,state, parms)),
                                eval(parse(text=cake.model$diffs[[box]])))
      }
      return(list(c(diffs)))
    } 
  }
  
  costFunctions <- CakeInternalCostFunctions(cake.model, state.ini.optim, state.ini.optim.boxnames, state.ini.fixed,
                                             parms.fixed, observed, mkindiff = mkindiff, quiet, atol=atol, solution=solution, err=NULL)
  
  # modFit parameter transformations can explode if you put in parameters that are equal to a bound, so we move them away by a tiny amount.
  all.optim <- ShiftAwayFromBoundaries(c(state.ini.optim, parms.optim), lower, upper)
  
  fit <-modFit(costFunctions$cost, all.optim, lower = lower, upper = upper, ...)
  
  # We need to return some more data for summary and plotting
  fit$solution <- solution
   
  if (solution == "deSolve") {
    fit$mkindiff <- mkindiff
  }
  
  # We also need various other information for summary and plotting
  fit$map <- cake.model$map
  fit$diffs <- cake.model$diffs
  
  out_predicted <- costFunctions$get.predicted()
  
  predicted_long <- wide_to_long(out_predicted, time = "time")
  fit$predicted <- out_predicted
  
  # Collect initial parameter values in two dataframes
  fit$start <- data.frame(initial = c(state.ini.optim, parms.optim))
  fit$start$type = c(rep("state", length(state.ini.optim)), rep("deparm", length(parms.optim)))
  fit$start$lower <- lower
  fit$start$upper <- upper
  
  fit$fixed <- data.frame(value = c(state.ini.fixed, parms.fixed))
  fit$fixed$type = c(rep("state", length(state.ini.fixed)), rep("deparm", length(parms.fixed)))
  
  # Calculate chi2 error levels according to FOCUS (2006)
  fit$errmin <- CakeChi2(cake.model, observed, predicted_long, obs_vars, parms.optim, state.ini.optim, state.ini, parms.ini, fit$fixed)
  
  # Calculate dissipation times DT50 and DT90 and formation fractions
  parms.all = c(fit$par, parms.fixed)
  fit$distimes <- data.frame(DT50 = rep(NA, length(obs_vars)), DT90 = rep(NA, length(obs_vars)), 
                             row.names = obs_vars)
  fit$extraDT50<- data.frame(k1 = rep(NA, length(names(cake.model$map))), k2 = rep(NA, length(names(cake.model$map))), row.names = names(cake.model$map))
  
  for (compartment.name in names(cake.model$map)) {
    type = names(cake.model$map[[compartment.name]])[1]
    
    fit$distimes[compartment.name, ] = CakeDT(type,compartment.name,parms.all,sannMaxIter)
    fit$extraDT50[compartment.name, ] = CakeExtraDT(type, compartment.name, parms.all)
  }
  
  fit$ioreRepDT = CakeIORERepresentativeDT("Parent", parms.all)
  fit$fomcRepDT = CakeFOMCBackCalculatedDT(parms.all)
  fit$penalties <- CakePenaltiesLong(parms.all, out_predicted, observed)
  
  # Collect observed, predicted and residuals
  data<-observed
  data$err<-rep(NA,length(data$time))
  data <- merge(data, predicted_long, by = c("time", "name"))
  names(data)<-c("time", "variable", "observed","err-var", "predicted")
  data$residual <- data$observed - data$predicted
  data$variable <- ordered(data$variable, levels = obs_vars)
  fit$data <- data[order(data$variable, data$time), ]
  fit$atol <- atol
  
  class(fit) <- c("CakeFit", "mkinfit", "modFit") 
  return(fit)
}

Contact - Imprint