summaryrefslogtreecommitdiff
path: root/CakeOlsFit.R
blob: 75ac471a52c17ce7591fd8625be6121a33a013c0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# Originally: mkinfit.R 87 2010-12-09 07:31:59Z jranke $

# Based on code in mkinfit
# Portions Johannes Ranke 2010
# Contact: mkin-devel@lists.berlios.de
# The summary function is an adapted and extended version of summary.modFit
# from the FME package, v 1.1 by Soetart and Petzoldt, which was in turn
# inspired by summary.nls.lm

#$Id: CakeOlsFit.R 216 2011-07-05 14:35:03Z nelr $
# This version has been modified to expect SFO parameterised as k and flow fractions
# Modifications developed by Tessella Plc for Syngenta: Copyright (C) 2011  Syngenta
# Authors: Rob Nelson, Richard Smith
# Tessella Project Reference: 6245

#    This program is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
# 
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
# 
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <http://www.gnu.org/licenses/>.”

CakeOlsFit <- function(mkinmod, observed,
  parms.ini = rep(0.1, length(mkinmod$parms)),
  state.ini = c(100, rep(0, length(mkinmod$diffs) - 1)), 
  lower = 0, upper = Inf,
  fixed_parms = NULL,
  fixed_initials = names(mkinmod$diffs)[-1],
  eigen = TRUE,
  plot = FALSE, quiet = FALSE,
  err = NULL, weight = "none", scaleVar = FALSE,
  atol = 1e-6,
  ...)
{
  mod_vars <- names(mkinmod$diffs)
  # Subset dataframe with mapped (modelled) variables
  observed <- subset(observed, name %in% names(mkinmod$map))
  # Get names of observed variables
  obs_vars = unique(as.character(observed$name))

  # Name the parameters if they are not named yet
  if(is.null(names(parms.ini))) names(parms.ini) <- mkinmod$parms

  # Name the inital parameter values if they are not named yet
  if(is.null(names(state.ini))) names(state.ini) <- mod_vars

  # Parameters to be optimised
  parms.fixed <- parms.ini[fixed_parms]
  optim_parms <- setdiff(names(parms.ini), fixed_parms)
  parms.optim <- parms.ini[optim_parms]

  state.ini.fixed <- state.ini[fixed_initials]
  optim_initials <- setdiff(names(state.ini), fixed_initials)
  state.ini.optim <- state.ini[optim_initials]
  state.ini.optim.boxnames <- names(state.ini.optim)
  if(length(state.ini.optim) > 0) {
      names(state.ini.optim) <- paste(names(state.ini.optim), "0", sep="_")
  }

  # Decide if the solution of the model can be based on a simple analytical
  # formula, the spectral decomposition of the matrix (fundamental system)
  # or a numeric ode solver from the deSolve package
  if (length(mkinmod$map) == 1) {
    solution = "analytical"
  } else {
    if (is.matrix(mkinmod$coefmat) & eigen) solution = "eigen"
    else solution = "deSolve"
  }

  # Create a function calculating the differentials specified by the model
  # if necessary
  if(solution == "deSolve") {
    mkindiff <- function(t, state, parms) {
      time <- t
      diffs <- vector()
      for (box in mod_vars)
      {
        diffname <- paste("d", box, sep="_")      
        diffs[diffname] <- with(as.list(c(time,state, parms)),
          eval(parse(text=mkinmod$diffs[[box]])))
      }
      return(list(c(diffs)))
    } 
  }

  cost.old <- 1e100
  calls <- 0
  out_predicted <- NA
  # Define the model cost function
  cost <- function(P)
  {
    assign("calls", calls+1, inherits=TRUE)
    if(length(state.ini.optim) > 0) {
      odeini <- c(P[1:length(state.ini.optim)], state.ini.fixed)
      names(odeini) <- c(state.ini.optim.boxnames, names(state.ini.fixed))
    } else odeini <- state.ini.fixed

    odeparms <- c(P[(length(state.ini.optim) + 1):length(P)], parms.fixed)

    # Ensure initial state is at time 0
    outtimes = unique(c(0,observed$time))
    evalparse <- function(string)
    {
      eval(parse(text=string), as.list(c(odeparms, odeini)))
    }

    # Solve the system
    if (solution == "analytical") {
      parent.type = names(mkinmod$map[[1]])[1]  
      parent.name = names(mkinmod$diffs)[[1]]
      o <- switch(parent.type,
        SFO = SFO.solution(outtimes, 
            evalparse(parent.name),
            evalparse(paste("k", parent.name, sep="_"))),
#            evalparse("k")),
#            evalparse(paste("k", parent.name, "sink", sep="_"))),
        FOMC = FOMC.solution(outtimes,
            evalparse(parent.name),
            evalparse("alpha"), evalparse("beta")),
        DFOP = DFOP.solution(outtimes,
            evalparse(parent.name),
            evalparse("k1"), evalparse("k2"),
            evalparse("g")),
        HS = HS.solution(outtimes,
            evalparse(parent.name),
            evalparse("k1"), evalparse("k2"),
            evalparse("tb")),
        SFORB = SFORB.solution(outtimes,
            evalparse(parent.name),
            evalparse(paste("k", parent.name, "bound", sep="_")),
            evalparse(paste("k", sub("free", "bound", parent.name), "free", sep="_")),
            evalparse(paste("k", parent.name, "sink", sep="_")))
      )
      out <- cbind(outtimes, o)
      dimnames(out) <- list(outtimes, c("time", sub("_free", "", parent.name)))
    }
    if (solution == "eigen") {
      coefmat.num <- matrix(sapply(as.vector(mkinmod$coefmat), evalparse), 
        nrow = length(mod_vars))
      e <- eigen(coefmat.num)
      c <- solve(e$vectors, odeini)
      f.out <- function(t) {
        e$vectors %*% diag(exp(e$values * t), nrow=length(mod_vars)) %*% c
      }
      o <- matrix(mapply(f.out, outtimes), 
        nrow = length(mod_vars), ncol = length(outtimes))
      dimnames(o) <- list(mod_vars, outtimes)
      out <- cbind(time = outtimes, t(o))
    } 
    if (solution == "deSolve")  
    {
      out <- ode(
        y = odeini,
        times = outtimes,
        func = mkindiff, 
        parms = odeparms,
        atol = atol
      )
    }
  
    # Output transformation for models with unobserved compartments like SFORB
    out_transformed <- data.frame(time = out[,"time"])
    for (var in names(mkinmod$map)) {
      if((length(mkinmod$map[[var]]) == 1) || solution == "analytical") {
        out_transformed[var] <- out[, var]
      } else {
        out_transformed[var] <- rowSums(out[, mkinmod$map[[var]]])
      }
    }    
    assign("out_predicted", out_transformed, inherits=TRUE)

    mC <- CakeCost(out_transformed, observed, y = "value",
      err = err, weight = weight, scaleVar = scaleVar)
	mC$penalties <- CakePenalties(odeparms, out_transformed, observed)
	mC$model <- mC$cost + mC$penalties;
	if (mC$model < cost.old) {
		if (!quiet) 
			cat("Model cost at call ", calls, ": m", mC$cost, 'p:', mC$penalties, 'o:', mC$model,
			  "\n")

      # Plot the data and current model output if requested
      if(plot) {
        outtimes_plot = seq(min(observed$time), max(observed$time), length.out=100)
        if (solution == "analytical") {
          o_plot <- switch(parent.type,
            SFO = SFO.solution(outtimes_plot, 
                evalparse(parent.name),
                evalparse(paste("k", parent.name, sep="_"))),
#                evalparse(paste("k", parent.name, "sink", sep="_"))),
            FOMC = FOMC.solution(outtimes_plot,
                evalparse(parent.name),
                evalparse("alpha"), evalparse("beta")),
            DFOP = DFOP.solution(outtimes_plot,
                evalparse(parent.name),
                evalparse("k1"), evalparse("k2"),
                evalparse("g")),
            HS = HS.solution(outtimes_plot,
                evalparse(parent.name),
                evalparse("k1"), evalparse("k2"),
                evalparse("tb")),
            SFORB = SFORB.solution(outtimes_plot,
                evalparse(parent.name),
                evalparse(paste("k", parent.name, "bound", sep="_")),
                evalparse(paste("k", sub("free", "bound", parent.name), "free", sep="_")),
                evalparse(paste("k", parent.name, "sink", sep="_")))
          )
          out_plot <- cbind(outtimes_plot, o_plot)
          dimnames(out_plot) <- list(outtimes_plot, c("time", sub("_free", "", parent.name)))
        }
        if(solution == "eigen") {
          o_plot <- matrix(mapply(f.out, outtimes_plot), 
            nrow = length(mod_vars), ncol = length(outtimes_plot))
          dimnames(o_plot) <- list(mod_vars, outtimes_plot)
          out_plot <- cbind(time = outtimes_plot, t(o_plot))
        } 
        if (solution == "deSolve") {
          out_plot <- ode(
            y = odeini,
            times = outtimes_plot,
            func = mkindiff, 
            parms = odeparms)
        }
        out_transformed_plot <- data.frame(time = out_plot[,"time"])
        for (var in names(mkinmod$map)) {
          if((length(mkinmod$map[[var]]) == 1) || solution == "analytical") {
            out_transformed_plot[var] <- out_plot[, var]
          } else {
            out_transformed_plot[var] <- rowSums(out_plot[, mkinmod$map[[var]]])
          }
        }    
        out_transformed_plot <<- out_transformed_plot

        plot(0, type="n", 
          xlim = range(observed$time), ylim = range(observed$value, na.rm=TRUE),
          xlab = "Time", ylab = "Observed")
        col_obs <- pch_obs <- 1:length(obs_vars)
        names(col_obs) <- names(pch_obs) <- obs_vars
        for (obs_var in obs_vars) {
          points(subset(observed, name == obs_var, c(time, value)), 
            pch = pch_obs[obs_var], col = col_obs[obs_var])
        }
        matlines(out_transformed_plot$time, out_transformed_plot[-1])
        legend("topright", inset=c(0.05, 0.05), legend=obs_vars, 
          col=col_obs, pch=pch_obs, lty=1:length(pch_obs))
      }
    
      assign("cost.old", mC$model, inherits=TRUE)
    }
	# HACK to make nls.lm respect the penalty, as it just uses residuals and ignores the cost
	mC$residuals$res <- mC$residuals$res + mC$penalties / length(mC$residuals$res)
	
    return(mC)
  }
  fit <-modFit(cost, c(state.ini.optim, parms.optim), lower = lower, upper = upper, ...)

  # We need to return some more data for summary and plotting
  fit$solution <- solution
  if (solution == "eigen") {
    fit$coefmat <- mkinmod$coefmat
  } 
  if (solution == "deSolve") {
    fit$mkindiff <- mkindiff
  }
  if (plot == TRUE) {
    fit$out_transformed_plot = out_transformed_plot
  }

  # We also need various other information for summary and plotting
  fit$map <- mkinmod$map
  fit$diffs <- mkinmod$diffs
  
    # mkin_long_to_wide does not handle ragged data
#    fit$observed <- mkin_long_to_wide(observed)
    fit$observed <- reshape(observed, direction="wide", timevar="name", idvar="time")
    names(fit$observed) <- c("time", as.vector(unique(observed$name)))
  
  predicted_long <- mkin_wide_to_long(out_predicted, time = "time")
  fit$predicted <- out_predicted

  # Collect initial parameter values in two dataframes
  fit$start <- data.frame(initial = c(state.ini.optim, parms.optim))
  fit$start$type = c(rep("state", length(state.ini.optim)), rep("deparm", length(parms.optim)))
  fit$start$lower <- lower
  fit$start$upper <- upper

  fit$fixed <- data.frame(
    value = c(state.ini.fixed, parms.fixed))
  fit$fixed$type = c(rep("state", length(state.ini.fixed)), rep("deparm", length(parms.fixed)))

#  # Calculate chi2 error levels according to FOCUS (2006)
  fit$errmin <- CakeChi2(observed, predicted_long, obs_vars, parms.optim, state.ini.optim)

  # Calculate dissipation times DT50 and DT90 and formation fractions
  parms.all = c(fit$par, parms.fixed)
  fit$distimes <- data.frame(DT50 = rep(NA, length(obs_vars)), DT90 = rep(NA, length(obs_vars)), 
    row.names = obs_vars)
  fit$ff <- vector()
  fit$SFORB <- vector()
  for (obs_var in obs_vars) {
    type = names(mkinmod$map[[obs_var]])[1]  

    fit$distimes[obs_var, ] = CakeDT(type,obs_var,parms.all)
  }

  fit$penalties <- CakePenaltiesLong(parms.all, out_predicted, observed)
  
  # Collect observed, predicted and residuals
  data<-observed
  data$err<-rep(NA,length(data$time))
  data <- merge(data, predicted_long, by = c("time", "name"))
  names(data)<-c("time", "variable", "observed","err-var", "predicted")
  data$residual <- data$observed - data$predicted
  data$variable <- ordered(data$variable, levels = obs_vars)
  fit$data <- data[order(data$variable, data$time), ]
  fit$atol <- atol

  class(fit) <- c("CakeFit", "mkinfit", "modFit") 
  return(fit)
}

Contact - Imprint