1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
#$Id$
# Generates fitted curves so the GUI can plot them
# Based on code in IRLSkinfit
# Author: Rob Nelson (Tessella)
# Modifications developed by Tessella Plc for Syngenta: Copyright (C) 2011 Syngenta
# Tessella Project Reference: 6245
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.”
CakePlotInit <- function(fit, xlim = range(fit$data$time), ...)
{
t.map.names <- names(fit$map)
metabolites <- grep("[A-Z]\\d", t.map.names, value = TRUE)
t.map.rest <- setdiff(t.map.names, metabolites)
# Generate the normal graphs.
final <- CakeOlsPlot(fit, xlim)
final_scaled <- final
if(length(metabolites) > 0){
for(i in 1:length(metabolites))
{
metabolite <- metabolites[i]
decay_var <- paste("k", metabolite, sep="_")
# calculate the new ffm and generate the two ffm scale charts
regex <- paste("f_(.+)_to", metabolite, sep="_")
decays = grep(regex, names(fit$par), value = TRUE)
ffm_fitted <- sum(fit$par[decays])
normal <- final
ffm_scale <- NULL
# Generate the DT50=1000d and ffm as fitted.
k_new <- fit$par[decay_var]*fit$distimes[metabolite,]["DT50"]/1000;
fit$par[decay_var]<- k_new[metabolite,]
dt50_1000_ffm_fitted <- CakeOlsPlot(fit, xlim)[metabolite]
naming <- c(names(final), paste(metabolite, "DT50_1000_FFM_FITTED", sep="_"))
normal <- c(final, dt50_1000_ffm_fitted)
names(normal) <- naming
final <- normal
# Generate the scaled FFM
if(ffm_fitted != 0)
{
ffm_scale <- 1 / ffm_fitted
final_scaled <- final[c("time", metabolite, paste(metabolite, "DT50_1000_FFM_FITTED", sep="_"))]
final_scaled[t.map.rest] <- NULL;
final_frame <- as.data.frame(final_scaled)
new_names <- c(paste(metabolite, "DT50_FITTED_FFM_1", sep="_"), paste(metabolite, "DT50_1000_FFM_1", sep="_"))
names(final_frame) <- c("time", new_names)
final_frame[new_names]<-final_frame[new_names]*ffm_scale;
cat("<PLOT MODEL START>\n")
write.table(final_frame, quote=FALSE)
cat("<PLOT MODEL END>\n")
}
}
}
cat("<PLOT MODEL START>\n")
write.table(final, quote=FALSE)
cat("<PLOT MODEL END>\n")
# View(final)
}
CakeOlsPlot <- function(fit, xlim = range(fit$data$time), scale_x = 1.0, ...)
{
solution = fit$solution
if ( is.null(solution) ) {
solution <- "deSolve"
}
atol = fit$atol
if ( is.null(atol) ) {
atol = 1.0e-6
}
fixed <- fit$fixed$value
names(fixed) <- rownames(fit$fixed)
parms.all <- c(fit$par, fixed)
ininames <- c(
rownames(subset(fit$start, type == "state")),
rownames(subset(fit$fixed, type == "state")))
odeini <- parms.all[ininames]
names(odeini) <- names(fit$diffs)
outtimes <- seq(0, xlim[2], length.out=101) * scale_x
odenames <- c(
rownames(subset(fit$start, type == "deparm")),
rownames(subset(fit$fixed, type == "deparm")))
odeparms <- parms.all[odenames]
# Solve the system
evalparse <- function(string)
{
eval(parse(text=string), as.list(c(odeparms, odeini)))
}
if (solution == "analytical") {
parent.type = names(fit$map[[1]])[1]
parent.name = names(fit$diffs)[[1]]
o <- switch(parent.type,
SFO = SFO.solution(outtimes,
evalparse(parent.name),
evalparse(paste("k", parent.name, sep="_"))),
FOMC = FOMC.solution(outtimes,
evalparse(parent.name),
evalparse("alpha"), evalparse("beta")),
DFOP = DFOP.solution(outtimes,
evalparse(parent.name),
evalparse("k1"), evalparse("k2"),
evalparse("g")),
HS = HS.solution(outtimes,
evalparse(parent.name),
evalparse("k1"), evalparse("k2"),
evalparse("tb")),
SFORB = SFORB.solution(outtimes,
evalparse(parent.name),
evalparse(paste("k", parent.name, "free_bound", sep="_")),
evalparse(paste("k", parent.name, "bound_free", sep="_")),
evalparse(paste("k", parent.name, "free_sink", sep="_")))
)
out <- cbind(outtimes, o)
dimnames(out) <- list(outtimes, c("time", parent.name))
}
if (solution == "eigen") {
coefmat.num <- matrix(sapply(as.vector(fit$coefmat), evalparse),
nrow = length(odeini))
e <- eigen(coefmat.num)
c <- solve(e$vectors, odeini)
f.out <- function(t) {
e$vectors %*% diag(exp(e$values * t), nrow=length(odeini)) %*% c
}
o <- matrix(mapply(f.out, outtimes),
nrow = length(odeini), ncol = length(outtimes))
dimnames(o) <- list(names(odeini), NULL)
out <- cbind(time = outtimes, t(o))
}
if (solution == "deSolve") {
out <- ode(
y = odeini,
times = outtimes,
func = fit$mkindiff,
parms = odeparms,
atol = atol
)
}
# Output transformation for models with unobserved compartments like SFORB
out_transformed <- data.frame(time = out[,"time"])
for (var in names(fit$map)) {
if(length(fit$map[[var]]) == 1) {
out_transformed[var] <- out[, var]
} else {
out_transformed[var] <- rowSums(out[, fit$map[[var]]])
}
}
return(out_transformed)
}
|