1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
#$Id: CakeOlsPlot.R 216 2011-07-05 14:35:03Z nelr $
# Generates fitted curves so the GUI can plot them
# Based on code in IRLSkinfit
# Author: Rob Nelson (Tessella)
# Modifications developed by Tessella Plc for Syngenta: Copyright (C) 2011 Syngenta
# Tessella Project Reference: 6245
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.”
CakeOlsPlot <- function(fit, xlim = range(fit$data$time), ...)
{
cat("<PLOT MODEL START>\n")
solution = fit$solution
if ( is.null(solution) ) {
solution <- "deSolve"
}
atol = fit$atol
if ( is.null(atol) ) {
atol = 1.0e-6
}
fixed <- fit$fixed$value
names(fixed) <- rownames(fit$fixed)
parms.all <- c(fit$par, fixed)
ininames <- c(
rownames(subset(fit$start, type == "state")),
rownames(subset(fit$fixed, type == "state")))
odeini <- parms.all[ininames]
names(odeini) <- names(fit$diffs)
outtimes <- seq(0, xlim[2], length.out=101)
odenames <- c(
rownames(subset(fit$start, type == "deparm")),
rownames(subset(fit$fixed, type == "deparm")))
odeparms <- parms.all[odenames]
# Solve the system
evalparse <- function(string)
{
eval(parse(text=string), as.list(c(odeparms, odeini)))
}
if (solution == "analytical") {
parent.type = names(fit$map[[1]])[1]
parent.name = names(fit$diffs)[[1]]
o <- switch(parent.type,
SFO = SFO.solution(outtimes,
evalparse(parent.name),
evalparse(paste("k", parent.name, sep="_"))),
FOMC = FOMC.solution(outtimes,
evalparse(parent.name),
evalparse("alpha"), evalparse("beta")),
DFOP = DFOP.solution(outtimes,
evalparse(parent.name),
evalparse("k1"), evalparse("k2"),
evalparse("g")),
HS = HS.solution(outtimes,
evalparse(parent.name),
evalparse("k1"), evalparse("k2"),
evalparse("tb")),
SFORB = SFORB.solution(outtimes,
evalparse(parent.name),
evalparse(paste("k", parent.name, "free_bound", sep="_")),
evalparse(paste("k", parent.name, "bound_free", sep="_")),
evalparse(paste("k", parent.name, "free_sink", sep="_")))
)
out <- cbind(outtimes, o)
dimnames(out) <- list(outtimes, c("time", parent.name))
}
if (solution == "eigen") {
coefmat.num <- matrix(sapply(as.vector(fit$coefmat), evalparse),
nrow = length(odeini))
e <- eigen(coefmat.num)
c <- solve(e$vectors, odeini)
f.out <- function(t) {
e$vectors %*% diag(exp(e$values * t), nrow=length(odeini)) %*% c
}
o <- matrix(mapply(f.out, outtimes),
nrow = length(odeini), ncol = length(outtimes))
dimnames(o) <- list(names(odeini), NULL)
out <- cbind(time = outtimes, t(o))
}
if (solution == "deSolve") {
out <- ode(
y = odeini,
times = outtimes,
func = fit$mkindiff,
parms = odeparms,
atol = atol
)
}
# Output transformation for models with unobserved compartments like SFORB
out_transformed <- data.frame(time = out[,"time"])
for (var in names(fit$map)) {
if(length(fit$map[[var]]) == 1) {
out_transformed[var] <- out[, var]
} else {
out_transformed[var] <- rowSums(out[, fit$map[[var]]])
}
}
print(out_transformed)
cat("<PLOT MODEL END>\n")
}
|