1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
# $Id$
# CakeSummary: Functions to calculate statistics used in the summary,
# and display the summary itself.
# Parts modified from package mkin
# Parts Tessella for Syngenta: Copyright (C) 2011-2016 Syngenta
# Tessella Project Reference: 6245, 7247, 8361, 7414
# The CAKE R modules are free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Calculate the extra decay times for the other k values in DFOP
# and HS
# Arguments
# type - type of compartment
# parms.all - list of parameters
CakeExtraDT<-function(type, obs_var, parms.all) {
DT50k1 = NA
DT50k2 = NA
if (type == "DFOP"){
k1_name = paste("k1", obs_var, sep="_")
k2_name = paste("k2", obs_var, sep="_")
if (!is.na(parms.all[k1_name]) && !is.na(parms.all[k2_name])) {
k1 = parms.all[k1_name]
k2 = parms.all[k2_name]
DT50k1 = log(2)/k1
DT50k2 = log(2)/k2
}
}
if (type == "HS"){
if (!is.na(parms.all["k1"]) && !is.na(parms.all["k2"])) {
k1 = parms.all["k1"]
k2 = parms.all["k2"]
DT50k1 = log(2)/k1
DT50k2 = log(2)/k2
}
}
ret<-c(DT50k1, DT50k2)
names(ret)<-c("k1", "k2")
ret
}
# Calculate the representative decay time for an IORE model.
# Arguments
# obs_var - compartment name
# parms.all - list of parameters
CakeIORERepresentativeDT<-function(obs_var, parms.all) {
repDT = NA
if ("N" %in% names(parms.all)){
k_name = paste("k", obs_var, sep="_")
k_tot = parms.all[[k_name]]
Nval = parms.all[["N"]]
M0_name = paste(obs_var, "0", sep="_")
if (!(M0_name %in% names(parms.all))){
M0_name = obs_var
}
M0val = parms.all[[M0_name]]
if (Nval == 1){
repDT = log(2)/k_tot
}
else{
repDT = (log(2)/log(10)) * ((10^(Nval - 1) - 1) * M0val^(1 - Nval))/((Nval - 1) * k_tot)
}
}
repDT
}
# Calculate the "back-calculated" DT50 for an FOMC model.
# Arguments
# parms.all - list of parameters
CakeFOMCBackCalculatedDT<-function(parms.all) {
repDT = NA
if ("alpha" %in% names(parms.all) && "beta" %in% names(parms.all)){
repDT = parms.all[["beta"]] * (10^(1/parms.all[["alpha"]]) - 1) * (log(2)/log(10))
}
repDT
}
# Calculate the decay times for a compartment
# Arguments
# type - type of compartment
# obs_var - compartment name
# parms.all - list of parameters
# sannMaxIter - the maximum amount of iterations to do for SANN
CakeDT<-function(type, obs_var, parms.all, sannMaxIter) {
if (type == "SFO") {
k_name = paste("k", obs_var, sep="_")
k_tot = parms.all[k_name]
DT50 = log(2)/k_tot
DT90 = log(10)/k_tot
}
if (type == "FOMC") {
alpha = parms.all["alpha"]
beta = parms.all["beta"]
DT50 = beta * (2^(1/alpha) - 1)
DT90 = beta * (10^(1/alpha) - 1)
}
if (type == "DFOP") {
k1 = parms.all[paste("k1", obs_var, sep="_")]
k2 = parms.all[paste("k2", obs_var, sep="_")]
g = parms.all[paste("g", obs_var, sep="_")]
f <- function(t, x) {
fraction <- g * exp( - k1 * t) + (1 - g) * exp( - k2 * t)
(fraction - (1 - x/100))^2
}
DTminBounds <- 0.001
# Determine a decent starting point for numerical iteration. The latter two terms are also lower bounds for DT50.
DT50min <- max(0.001, (1 / k1) * log(g * 2), (1 / k2) * log((1 - g) * 2))
# Set the starting point for the numerical solver to a be a bit smaller than the computed minimum as the R optim function seems to get confused if the min is
# greater than the answer it's trying to converge to (up to its level of accuracy).
DT50Initial <- DT50min * 0.9
# Results greater than 10,000 are not interesting. The R optim routine also handles very large values unreliably and can claim to converge when it is nowhere near.
if (DT50min > 10000){
DT50 = ">10,000"
}else{
DT50.temp <- optim(DT50Initial, f, method="SANN", control=list(fnscale=0.05, maxit=sannMaxIter), x = 50, lower = DTminBounds)
DT50.o = DT50.temp$par
DT50.converged = DT50.temp$convergence == 0
DT50 = ifelse(!DT50.converged || DT50.o <= 0, NA, DT50.o)
if (DT50.converged && DT50 > 10000){
DT50 = ">10,000"
}
}
# Determine a decent starting point for numerical iteration. The latter two terms are also lower bounds for DT90.
DT90min <- max(0.001, (1 / k1) * log(g * 10), (1 / k2) * log((1 - g) * 10))
# Set the starting point for the numerical solver to a be a bit smaller than the computed minimum as the R optim function seems to get confused if the min is
# greater than the answer it's trying to converge to (up to its level of accuracy).
DT90Initial <- DT90min * 0.9
if (DT90min > 10000){
DT90 = ">10,000"
}else{
DT90.temp <- optim(DT90Initial, f, method="SANN", control=list(fnscale=0.05, maxit=sannMaxIter), x = 90, lower = DTminBounds)
DT90.o = DT90.temp$par
DT90.converged = DT90.temp$convergence == 0
DT90 = ifelse(!DT90.converged || DT90.o <= 0, NA, DT90.o)
if (DT90.converged && DT90 > 10000){
DT90 = ">10,000"
}
}
}
if (type == "HS") {
k1 = parms.all["k1"]
k2 = parms.all["k2"]
tb = parms.all["tb"]
DTx <- function(x) {
DTx.a <- (log(100/(100 - x)))/k1
DTx.b <- tb + (log(100/(100 - x)) - k1 * tb)/k2
if (DTx.a < tb) DTx <- DTx.a
else DTx <- DTx.b
return(DTx)
}
DT50 <- DTx(50)
DT90 <- DTx(90)
}
if (type == "IORE") {
k_name = paste("k", obs_var, sep="_")
k_tot = parms.all[k_name]
Nval = parms.all["N"]
M0_name = paste(obs_var, "0", sep="_")
if (!(M0_name %in% names(parms.all))){
M0_name = obs_var
}
M0val = parms.all[M0_name]
if (Nval == 1){
DT50 = log(2)/k_tot
DT90 = log(10)/k_tot
}
else{
DT50 = ((2^(Nval - 1) - 1) * M0val^(1 - Nval))/((Nval - 1) * k_tot)
DT90 = ((10^(Nval - 1) - 1) * M0val^(1 - Nval))/((Nval - 1) * k_tot)
}
}
ret<-c(DT50, DT90)
names(ret)<-c("DT50","DT90")
ret
}
# Compute chi2 etc
# Arguments
# observed - data.frame of observed data
# predicted_long - fitted values etc
# obs_vars - compartment names
# parms.optim - list of fitted parameters
# state,ini.optim - list of fitted initial values
# fixed - parameters that were fixed (taken from fit$fixed usually)
#
CakeChi2<-function(mkinmod, observed, predicted_long, obs_vars, parms.optim, state.ini.optim, state.ini, parms.ini, fixed) {
# Calculate chi2 error levels according to FOCUS (2006)
# You would usually call mkinfit to fit the data, however it seems that we've already fit the data
# bundle <- mkinfit(mkinmod, observed, parms.ini = parms.optim, state.ini = state.ini) #, err='err')
# Somewhere else. Calling mkinfit may result in an error during fitting. So Instead we just create
# the values that the new version of CakeErrMin expects. There is no class check so it's fine.
bundle<-vector()
bundle$predicted <- predicted_long
bundle$observed <- observed
bundle$obs_vars <- obs_vars
bundle$par <- c(parms.optim, state.ini.optim)
bundle$fixed <- fixed
errmin.overall <- CakeErrMin(bundle)
errmin.overall
}
# Compute additional statistics (r?/efficiency) of obs v pred for each compartment and the whole problem
CakeAdditionalStats<-function(obsvspred){
agg<-aggregate(obsvspred[c('observed', 'err-var', 'predicted', 'residual')], list(name=obsvspred$variable), function(x){x}, simplify=FALSE)
frames<-apply(agg, 1, as.data.frame);
names(frames)<-agg$name;
frames$all<-obsvspred
t(sapply(frames, function(frame){
# This function takes a data frame for a single variable and makes the stats for it
# r?: FOCUS eq 6.5 p. 97
# Efficiency: eq 6.6 p. 99
do <- frame$observed - mean(frame$observed)
dp <- frame$predicted - mean(frame$predicted)
r2 <- ( sum(do * dp) / sqrt(sum(do^2) * sum(dp^2)) ) ^ 2
eff <- 1 - ( sum((frame$predicted - frame$observed)^2) / sum(do^2) )
list(r2=r2, eff=eff)
}))
}
# Summarise a fit - used for CakeIrlsFit and CakeOlsFit
summary.CakeFit <- function(object, data = TRUE, distimes = TRUE, halflives = TRUE, ff = TRUE, cov = FALSE,...) {
param <- object$par
pnames <- names(param)
p <- length(param)
# If the Hessian comes back as the identity matrix, there are no residuals and so we can't provide statistics
if(object$hessian==diag(dim(object$hessian)[1])) {
covar=NULL
} else {
covar <- try(solve(0.5*object$hessian), silent = TRUE) # unscaled covariance
}
rdf <- object$df.residual
compartmentsFixedConcentration <- gsub("_0$", "", rownames(subset(object$fixed, type=="state")))
# As for chi squared values, observations at time 0 should not count towards number of degrees of freedom if the corresponding
# initial concentration is 0.
for (compartment in compartmentsFixedConcentration){
timeZeroObservations <- subset(object$data, time==0 & variable==compartment)
if (length(row.names(timeZeroObservations)) > 0){
rdf <- rdf - length(row.names(timeZeroObservations))
}
}
resvar <- object$ssr / rdf
modVariance <- object$ssr / length(object$residuals)
if (!is.numeric(covar)) {
covar=NULL
} else {
message <- "ok"
rownames(covar) <- colnames(covar) <-pnames
se <- sqrt(diag(covar) * resvar)
names(se) <- pnames
tval <- param / se
}
if (!all(object$start$lower >=0)) {
message <- "Note that the one-sided t-test may not be appropriate if
parameter values below zero are possible."
warning(message)
} else message <- "ok"
if(cov && !is.null(covar)) {
# Filter the values for t-test, only apply t-test to k-values
t.names <- grep("k(\\d+)|k_(.*)", names(tval), value = TRUE)
t.rest <- setdiff(names(tval), t.names)
t.values <- c(tval)
t.values[t.rest] <- NA
t.result <- pt(t.values, rdf, lower.tail = FALSE)
# calculate the 90% confidence interval
alpha <- 0.10
lci90 <- c(param) + qt(alpha/2,rdf)*se
uci90 <- c(param) + qt(1-alpha/2,rdf)*se
# calculate the 95% confidence interval
alpha <- 0.05
lci95 <- c(param) + qt(alpha/2,rdf)*se
uci95 <- c(param) + qt(1-alpha/2,rdf)*se
param <- cbind(param, se, tval, t.result, lci90, uci90, lci95, uci95)
dimnames(param) <- list(pnames, c("Estimate", "Std. Error",
"t value", "Pr(>t)", "Lower CI (90%)", "Upper CI (90%)", "Lower CI (95%)", "Upper CI (95%)"))
ans <- list(residuals = object$residuals,
residualVariance = resvar,
sigma = sqrt(resvar),
modVariance = modVariance,
df = c(p, rdf), cov.unscaled = covar,
cov.scaled = covar * resvar,
info = object$info, niter = object$iterations,
stopmess = message,
par = param)
} else {
param <- cbind(param)
ans <- list(residuals = object$residuals,
residualVariance = resvar,
sigma = sqrt(resvar),
modVariance = modVariance,
df = c(p, rdf),
info = object$info, niter = object$iterations,
stopmess = message,
par = param)
}
ans$diffs <- object$diffs
if(data) {
ans$data <- object$data
ans$additionalstats = CakeAdditionalStats(object$data)
}
ans$start <- object$start
ans$fixed <- object$fixed
ans$errmin <- object$errmin
ans$penalties <- object$penalties
if(distimes) ans$distimes <- object$distimes
if(halflives){
ans$extraDT50 <- object$extraDT50
ans$ioreRepDT <- object$ioreRepDT
ans$fomcRepDT <- object$fomcRepDT
}
if(ff) ans$ff <- object$ff
if(length(object$SFORB) != 0) ans$SFORB <- object$SFORB
class(ans) <- c("summary.CakeFit","summary.mkinfit", "summary.cakeModFit")
return(ans)
}
# Print a summary. Used for CakeIrlsFit, CakeOlsFit and CakeMcmcFit
# Expanded from print.summary.cakeModFit
print.summary.CakeFit <- function(x, digits = max(3, getOption("digits") - 3), ...) {
cat("\nEquations:\n")
print(noquote(as.character(x[["diffs"]])))
df <- x$df
rdf <- df[2]
cat("\nStarting values for optimised parameters:\n")
print(x$start)
cat("\nFixed parameter values:\n")
if(length(x$fixed$value) == 0) cat("None\n")
else print(x$fixed)
if ( !is.null(x$par) ) {
cat("\nOptimised parameters:\n")
printCoefmat(x$par, digits = digits, ...)
}
cat("\nResidual standard error:",
format(signif(x$sigma, digits)), "on", rdf, "degrees of freedom\n")
cat("\nChi2 error levels in percent:\n")
x$errmin$err.min <- 100 * x$errmin$err.min
print(x$errmin, digits=digits,...)
printdistimes <- !is.null(x$distimes)
if(printdistimes){
cat("\nEstimated disappearance times:\n")
print(x$distimes, digits=digits,...)
}
printextraDT50 <- !is.null(x$extraDT50)
if(printextraDT50){
cat("\nHalf Lives for Extra k values:\n")
print(x$extraDT50, digits=digits,...)
}
printIoreRepDT <- !is.null(x$ioreRepDT)
if (printIoreRepDT){
cat("\nRepresentative Half Life for IORE:", format(signif(x$ioreRepDT, digits)))
}
printFomcRepDT <- !is.null(x$fomcRepDT)
if (printFomcRepDT){
cat("\nBack-calculated Half Life for FOMC:", format(signif(x$fomcRepDT, digits)))
}
printff <- !is.null(x$ff)
if(printff){
cat("\nEstimated formation fractions:\n")
print(data.frame(ff = x$ff), digits=digits,...)
}
printcor <- !is.null(x$cov.unscaled)
if (printcor){
Corr <- cov2cor(x$cov.unscaled)
rownames(Corr) <- colnames(Corr) <- rownames(x$par)
cat("\nParameter correlation:\n")
print(Corr, digits = digits, ...)
}
printdata <- !is.null(x$data)
if (printdata){
cat("\nData:\n")
print(format(x$data, digits = digits, scientific = FALSE,...), row.names = FALSE)
}
if(!is.null(x$additionalstats)){
cat("\nAdditional Stats:\n");
print(x$additionalstats, digits=digits, ...)
}
if(!(is.null(x$penalties) || 0 == dim(x$penalties)[[1]])){
cat("\nPenalties:\n");
print(x$penalties, digits=digits, row.names = FALSE, ...)
}
if ( !is.null(x$seed) ) {
cat("\nRandom Seed:", x$seed, "\n")
}
invisible(x)
}
|