summaryrefslogtreecommitdiff
path: root/CakeSummary.R
blob: 6c7c6615cf68aef113008778f5a461f8dfc02f0e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# $Id$
# CakeSummary: Functions to calculate statistics used in the summary,
# and display the summary itself.

# Parts modified from package mkin
# Parts Tessella (Rob Nelson/Richard Smith/Tamar Christina) for Syngenta: Copyright (C) 2011  Syngenta
# Tessella Project Reference: 6245, 7247

#    This program is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
# 
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
# 
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <http://www.gnu.org/licenses/>.”

# Calculate the extra decay times for the other k values in DFOP
# and HS
# Arguments
#  type - type of compartment
#  parms.all - list of parameters
CakeExtraDT<-function(type, parms.all) {  
    DT50k1 = NA    
    DT50k2 = NA    
    if (!is.na(parms.all["k1"]) && !is.na(parms.all["k2"])) {
      k1 = parms.all["k1"]
      k2 = parms.all["k2"]
      DT50k1 = log(2)/k1
      DT50k2 = log(2)/k2
    }
    ret<-c(DT50k1, DT50k2)
    names(ret)<-c("k1", "k2")
    ret
}

# Calculate the decay times for a compartment
# Arguments
#  type - type of compartment
#  obs_var - compartment name
#  parms.all - list of parameters
# sannMaxIter - the maximum amount of iterations to do for SANN
CakeDT<-function(type, obs_var, parms.all, sannMaxIter) {    
    if (type == "SFO") {
      # Changed to new parameterisation
      #k_names = grep(paste("k", obs_var, sep="_"), names(parms.all), value=TRUE)
      k_name = paste("k", obs_var, sep="_")
      k_tot = parms.all[k_name]
      DT50 = log(2)/k_tot
      DT90 = log(10)/k_tot
    }
    if (type == "FOMC") {
      alpha = parms.all["alpha"]
      beta = parms.all["beta"]
      DT50 = beta * (2^(1/alpha) - 1)
      DT90 = beta * (10^(1/alpha) - 1)
    }
    if (type == "DFOP") {
      k1 = parms.all["k1"]
      k2 = parms.all["k2"]
      g = parms.all["g"]
      f <- function(t, x) {
        fraction <- g * exp( - k1 * t) + (1 - g) * exp( - k2 * t)
        (fraction - (1 - x/100))^2
      }

      DTminBounds <- 0.001
      DTminInitial <- 1
      DT50.temp <- optim(DTminInitial, f, method="SANN", control=list(fnscale=0.05, maxit=sannMaxIter), x = 50, lower = DTminBounds)
      DT50.o = DT50.temp$par
      DT50.converged = DT50.temp$convergence == 0
      DT50 = ifelse(!DT50.converged, NA, DT50.o)
      DT90.temp <- optim(DTminInitial, f, method="SANN", control=list(fnscale=0.05, maxit=sannMaxIter), x = 90, lower = DTminBounds)
      DT90.o = DT90.temp$par
      DT90.converged = DT90.temp$convergence == 0
      DT90 = ifelse(!DT90.converged, NA, DT90.o)
    }
    if (type == "HS") {
      k1 = parms.all["k1"]
      k2 = parms.all["k2"]
      tb = parms.all["tb"]
      DTx <- function(x) {
        DTx.a <- (log(100/(100 - x)))/k1
        DTx.b <- tb + (log(100/(100 - x)) - k1 * tb)/k2
        if (DTx.a < tb) DTx <- DTx.a
        else DTx <- DTx.b
        return(DTx)
      }
      DT50 <- DTx(50)
      DT90 <- DTx(90)
    }
    if (type == "SFORB") {
      # FOCUS kinetics (2006), p. 60 f
      k_out_names = grep(paste("k", obs_var, "free", sep="_"), names(parms.all), value=TRUE)
      k_out_names = setdiff(k_out_names, paste("k", obs_var, "free", "bound", sep="_"))
      k_1output = sum(parms.all[k_out_names])
      k_12 = parms.all[paste("k", obs_var, "free", "bound", sep="_")]
      k_21 = parms.all[paste("k", obs_var, "bound", "free", sep="_")]

      sqrt_exp = sqrt(1/4 * (k_12 + k_21 + k_1output)^2 + k_12 * k_21 - (k_12 + k_1output) * k_21)
      b1 = 0.5 * (k_12 + k_21 + k_1output) + sqrt_exp
      b2 = 0.5 * (k_12 + k_21 + k_1output) - sqrt_exp

      SFORB_fraction = function(t) {
        ((k_12 + k_21 - b1)/(b2 - b1)) * exp(-b1 * t) +
        ((k_12 + k_21 - b2)/(b1 - b2)) * exp(-b2 * t)
      }
      f_50 <- function(t) (SFORB_fraction(t) - 0.5)^2
      DTmin <- 0.001
      DT50.temp <- optim(DTmin, f_50, method="SANN", control=list(fnscale=0.05, maxit=sannMaxIter), x = 50, lower = DTmin)
      DT50.o = DT50.temp$par
      DT50.converged = DT50.temp$convergence == 0
      if (!DT50.converged) DT50 = NA else DT50 = DT50.o
      f_90 <- function(t) (SFORB_fraction(t) - 0.1)^2
      DT90.temp <- optim(DTmin, f_90, method="SANN", control=list(fnscale=0.05, maxit=sannMaxIter), x = 90, lower = DTmin)
      DT90.o = DT90.temp$par
      DT90.converged = DT90.temp$convergence == 0
      if (!DT90.converged) DT90 = NA else DT90 = DT90.o
    }
    ret<-c(DT50, DT90)
    names(ret)<-c("DT50","DT90")
    ret
}

# Compute chi2 etc
# Arguments
#  observed - data.frame of observed data
#  predicted_long - fitted values etc
#  obs_vars - compartment names
#  parms.optim - list of fitted parameters
#  state,ini.optim - list of fitted initial values
#
CakeChi2<-function(mkinmod, observed, predicted_long, obs_vars, parms.optim, state.ini.optim, state.ini, parms.ini) {
  # Calculate chi2 error levels according to FOCUS (2006)
    
  if(getRversion() >= '2.14.0'){
    # You would usually call mkinfit to fit the data, however it seems that we've already fit the data
    # bundle <- mkinfit(mkinmod, observed, parms.ini = parms.optim, state.ini = state.ini) #, err='err') 
    # Somewhere else. Calling mkinfit may result in an error during fitting. So Instead we just create
    # the values that the new version of mkinerrmin expects. There is no class check so it's fine.
    bundle<-vector()
    bundle$predicted <- predicted_long
    bundle$observed <- observed
    bundle$obs_vars <- obs_vars
    bundle$par <- c(parms.optim, state.ini.optim)
    errmin.overall <- mkinerrmin(bundle)
    
    errmin.overall
  } else {
    means <- aggregate(value ~ time + name, data = observed, mean, na.rm=TRUE)
    errdata <- merge(means, predicted_long, by = c("time", "name"), suffixes = c("_mean", "_pred"))
    errdata <- errdata[order(errdata$time, errdata$name), ]
    errmin.overall <- mkinerrmin(errdata, length(parms.optim) + length(state.ini.optim))
    
    errmin <- data.frame(err.min = errmin.overall$err.min, 
      n.optim = errmin.overall$n.optim, df = errmin.overall$df)
    rownames(errmin) <- "All data"
    for (obs_var in obs_vars)
    {
      errdata.var <- subset(errdata, name == obs_var)
      n.k.optim <- length(grep(paste("k", obs_var, sep="_"), names(parms.optim)))
      n.initials.optim <- length(grep(paste(obs_var, ".*", "_0", sep=""), names(state.ini.optim)))
      n.optim <- n.k.optim + n.initials.optim
      if ("alpha" %in% names(parms.optim)) n.optim <- n.optim + 1
      if ("beta" %in% names(parms.optim)) n.optim <- n.optim + 1
      if ("k1" %in% names(parms.optim)) n.optim <- n.optim + 1
      if ("k2" %in% names(parms.optim)) n.optim <- n.optim + 1
      if ("g" %in% names(parms.optim)) n.optim <- n.optim + 1
      if ("tb" %in% names(parms.optim)) n.optim <- n.optim + 1
      errmin.tmp <- mkinerrmin(errdata.var, n.optim)
      errmin[obs_var, c("err.min", "n.optim", "df")] <- errmin.tmp
    }
    errmin
  }
}

# Compute additional statistics (r²/efficiency) of obs v pred for each compartment and the whole problem
CakeAdditionalStats<-function(obsvspred){
	agg<-aggregate(obsvspred[c('observed', 'err-var', 'predicted', 'residual')], list(name=obsvspred$variable), function(x){x}, simplify=FALSE)
	frames<-apply(agg, 1, as.data.frame);
	names(frames)<-agg$name;
	frames$all<-obsvspred
	
	t(sapply(frames, function(frame){
		# This function takes a data frame for a single variable and makes the stats for it
		# r²: FOCUS eq 6.5 p. 97
		# Efficiency: eq 6.6 p. 99
		do <- frame$observed - mean(frame$observed)
		dp <- frame$predicted - mean(frame$predicted)
		r2 <- ( sum(do * dp) / sqrt(sum(do^2) * sum(dp^2)) ) ^ 2
		eff <- 1 - ( sum((frame$predicted - frame$observed)^2) / sum(do^2) )
		list(r2=r2, eff=eff)
	}))
}

# Summarise a fit - used for CakeIrlsFit and CakeOlsFit
summary.CakeFit <- function(object, data = TRUE, distimes = TRUE, halflives = TRUE, ff = TRUE, cov = FALSE,...) {
  param  <- object$par
  pnames <- names(param)
  p      <- length(param)
  covar  <- try(solve(0.5*object$hessian), silent = TRUE)   # unscaled covariance
  # covar  <- try(ginv(0.5*object$hessian))   # unscaled covariance, calculate using generic inversion

  rdf    <- object$df.residual
  resvar <- object$ssr / rdf
  modVariance <- object$ssr / length(object$residuals)
    
  # if(!is.numeric(covar)){
   # covar  <- try(ginv(0.5*object$hessian))
  # }
  
  if (!is.numeric(covar)) {
#    message <- "Cannot estimate covariance; system is singular"
#    warning(message)
#    covar <- matrix(data = NA, nrow = p, ncol = p)
   covar=NULL
  } else {
    message <- "ok"
    rownames(covar) <- colnames(covar) <-pnames
    se     <- sqrt(diag(covar) * resvar)
    names(se) <- pnames
    tval      <- param / se
  }

  if (!all(object$start$lower >=0)) {
    message <- "Note that the one-sided t-test may not be appropriate if
      parameter values below zero are possible."
    warning(message)
  } else message <- "ok"

  if(cov && !is.null(covar)) { 

    # Filter the values for t-test, only apply t-test to k-values  
    t.names  <- grep("k(\\d+)|k_(.*)", names(tval), value = TRUE)
    t.rest   <- setdiff(names(tval), t.names)
    t.values <- c(tval)
    t.values[t.rest] <- NA
    t.result <- pt(t.values, rdf, lower.tail = FALSE)
    
    # Now set the values we're not interested in for the lower 
    # and upper bound we're not interested in to NA
    t.param = c(param)
    t.param[t.names] <- NA
    # calculate the 90% confidence interval
    alpha <- 0.10
    lci90 <- t.param + qt(alpha/2,rdf)*se
    uci90 <- t.param + qt(1-alpha/2,rdf)*se
    
    # calculate the 95% confidence interval
    alpha <- 0.05
    lci95 <- t.param + qt(alpha/2,rdf)*se
    uci95 <- t.param + qt(1-alpha/2,rdf)*se

    param <- cbind(param, se, tval, t.result, lci90, uci90, lci95, uci95)
    dimnames(param) <- list(pnames, c("Estimate", "Std. Error",
                                    "t value", "Pr(>t)", "Lower CI (90%)", "Upper CI (90%)", "Lower CI (95%)", "Upper CI (95%)"))
                                    
    ans <- list(residuals = object$residuals,
                residualVariance = resvar,
                sigma = sqrt(resvar),
                modVariance = modVariance,
                df = c(p, rdf), cov.unscaled = covar,
                cov.scaled = covar * resvar,
                info = object$info, niter = object$iterations,
                stopmess = message,
                par = param)
  } else {
    param <- cbind(param)  
    ans <- list(residuals = object$residuals,
                residualVariance = resvar,
                sigma = sqrt(resvar),
                modVariance = modVariance,
                df = c(p, rdf),
                info = object$info, niter = object$iterations,
                stopmess = message,
                par = param)
    }

  ans$diffs <- object$diffs
  if(data) {
	ans$data <- object$data
	ans$additionalstats = CakeAdditionalStats(object$data)
  }
  ans$start <- object$start
  ans$fixed <- object$fixed
  ans$errmin <- object$errmin 
  ans$penalties <- object$penalties
  if(distimes) ans$distimes <- object$distimes
  if(halflives) ans$extraDT50 <- object$extraDT50
  if(ff) ans$ff <- object$ff
  if(length(object$SFORB) != 0) ans$SFORB <- object$SFORB
  class(ans) <- c("summary.CakeFit","summary.mkinfit", "summary.cakeModFit") 
  return(ans)  
}

# Print a summary. Used for CakeIrlsFit, CakeOlsFit and CakeMcmcFit
# Expanded from print.summary.cakeModFit
print.summary.CakeFit <- function(x, digits = max(3, getOption("digits") - 3), ...) {
  cat("\nEquations:\n")
  print(noquote(as.character(x[["diffs"]])))
  df  <- x$df
  rdf <- df[2]

  cat("\nStarting values for optimised parameters:\n")
  print(x$start)

  cat("\nFixed parameter values:\n")
  if(length(x$fixed$value) == 0) cat("None\n")
  else print(x$fixed)

  if ( !is.null(x$par) ) {
    cat("\nOptimised parameters:\n")
    printCoefmat(x$par, digits = digits, ...)
  }

  cat("\nResidual standard error:",
      format(signif(x$sigma, digits)), "on", rdf, "degrees of freedom\n")

  cat("\nChi2 error levels in percent:\n")
  x$errmin$err.min <- 100 * x$errmin$err.min
  print(x$errmin, digits=digits,...)

  printdistimes <- !is.null(x$distimes)
  if(printdistimes){
    cat("\nEstimated disappearance times:\n")
    print(x$distimes, digits=digits,...)
  }  
  
  printextraDT50 <- !is.null(x$extraDT50)
  if(printextraDT50){
    cat("\nHalf Lives for Extra k values:\n")
    print(x$extraDT50, digits=digits,...)
  }  

  printff <- !is.null(x$ff)
  if(printff){
    cat("\nEstimated formation fractions:\n")
    print(data.frame(ff = x$ff), digits=digits,...)
  }    

  printSFORB <- !is.null(x$SFORB)
  if(printSFORB){
    cat("\nEstimated Eigenvalues of SFORB model(s):\n")
    print(x$SFORB, digits=digits,...)
  }    

  printcor <- !is.null(x$cov.unscaled)
  if (printcor){
    Corr <- cov2cor(x$cov.unscaled)
    rownames(Corr) <- colnames(Corr) <- rownames(x$par)
    cat("\nParameter correlation:\n")
    print(Corr, digits = digits, ...)
  }

  printdata <- !is.null(x$data)
  if (printdata){
    cat("\nData:\n")
    print(format(x$data, digits = digits, scientific = FALSE,...), row.names = FALSE)
  }
  
  if(!is.null(x$additionalstats)){
	cat("\nAdditional Stats:\n");
	print(x$additionalstats, digits=digits, ...)
  }
  
  if(!(is.null(x$penalties) || 0 == dim(x$penalties)[[1]])){
	cat("\nPenalties:\n");
	print(x$penalties, digits=digits, row.names = FALSE, ...)
  }
  
  if ( !is.null(x$seed) ) {
      cat("\nRandom Seed:", x$seed, "\n")
  }
  invisible(x)
}

Contact - Imprint