|
|
<!-- Generated by pkgdown: do not edit by hand -->
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Calibration data from Massart et al. (1997), example 3 — massart97ex3 • chemCal</title>
<!-- jquery -->
<script src="https://code.jquery.com/jquery-3.1.0.min.js" integrity="sha384-nrOSfDHtoPMzJHjVTdCopGqIqeYETSXhZDFyniQ8ZHcVy08QesyHcnOUpMpqnmWq" crossorigin="anonymous"></script>
<!-- Bootstrap -->
<link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous">
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
<!-- Font Awesome icons -->
<link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous">
<!-- clipboard.js -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script>
<!-- sticky kit -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/sticky-kit/1.1.3/sticky-kit.min.js" integrity="sha256-c4Rlo1ZozqTPE2RLuvbusY3+SU1pQaJC0TjuhygMipw=" crossorigin="anonymous"></script>
<!-- pkgdown -->
<link href="../pkgdown.css" rel="stylesheet">
<script src="../pkgdown.js"></script>
<meta property="og:title" content="Calibration data from Massart et al. (1997), example 3 — massart97ex3" />
<meta property="og:description" content="Sample dataset from p. 188 to test the package." />
<meta name="twitter:card" content="summary" />
<!-- mathjax -->
<script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script>
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body>
<div class="container template-reference-topic">
<header>
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">chemCal</a>
<span class="label label-default" data-toggle="tooltip" data-placement="bottom" title="Released package">0.1.37.9001</span>
</span>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="../reference/index.html">Functions and data</a>
</li>
<li>
<a href="../articles/chemCal.pdf">Short manual (pdf)</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
</header>
<div class="row">
<div class="col-md-9 contents">
<div class="page-header">
<h1>Calibration data from Massart et al. (1997), example 3</h1>
<div class="hidden name"><code>massart97ex3.Rd</code></div>
</div>
<div class="ref-description">
<p>Sample dataset from p. 188 to test the package.</p>
</div>
<pre class="usage"><span class='fu'>data</span>(<span class='no'>massart97ex3</span>)</pre>
<h2 class="hasAnchor" id="format"><a class="anchor" href="#format"></a>Format</h2>
<p>A dataframe containing 6 levels of x values with 5
observations of y for each level.</p>
<h2 class="hasAnchor" id="source"><a class="anchor" href="#source"></a>Source</h2>
<p>Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S., Lewi, P.J.,
Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and Qualimetrics: Part A,
Chapter 8.</p>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><div class='input'><span class='fu'>data</span>(<span class='no'>massart97ex3</span>)
<span class='fu'>attach</span>(<span class='no'>massart97ex3</span>)</div><div class='output co'>#> <span class='message'>The following objects are masked from massart97ex3 (pos = 3):</span>
#> <span class='message'></span>
#> <span class='message'> x, y</span></div><div class='input'><span class='no'>yx</span> <span class='kw'><-</span> <span class='fu'>split</span>(<span class='no'>y</span>, <span class='no'>x</span>)
<span class='no'>ybar</span> <span class='kw'><-</span> <span class='fu'>sapply</span>(<span class='no'>yx</span>, <span class='no'>mean</span>)
<span class='no'>s</span> <span class='kw'><-</span> <span class='fu'>round</span>(<span class='fu'>sapply</span>(<span class='no'>yx</span>, <span class='no'>sd</span>), <span class='kw'>digits</span> <span class='kw'>=</span> <span class='fl'>2</span>)
<span class='no'>w</span> <span class='kw'><-</span> <span class='fu'>round</span>(<span class='fl'>1</span> / (<span class='no'>s</span>^<span class='fl'>2</span>), <span class='kw'>digits</span> <span class='kw'>=</span> <span class='fl'>3</span>)
<span class='no'>weights</span> <span class='kw'><-</span> <span class='no'>w</span>[<span class='fu'>factor</span>(<span class='no'>x</span>)]
<span class='no'>m</span> <span class='kw'><-</span> <span class='fu'>lm</span>(<span class='no'>y</span> ~ <span class='no'>x</span>, <span class='kw'>w</span> <span class='kw'>=</span> <span class='no'>weights</span>)
<span class='fu'>calplot</span>(<span class='no'>m</span>)</div><div class='output co'>#> <span class='warning'>Warning: Assuming constant prediction variance even though model fit is weighted</span></div><div class='img'><img src='massart97ex3-1.png' alt='' width='700' height='433' /></div><div class='input'>
<span class='co'># The following concords with the book p. 200</span>
<span class='fu'>inverse.predict</span>(<span class='no'>m</span>, <span class='fl'>15</span>, <span class='kw'>ws</span> <span class='kw'>=</span> <span class='fl'>1.67</span>) <span class='co'># 5.9 +- 2.5</span></div><div class='output co'>#> $Prediction
#> [1] 5.865367
#>
#> $`Standard Error`
#> [1] 0.8926109
#>
#> $Confidence
#> [1] 2.478285
#>
#> $`Confidence Limits`
#> [1] 3.387082 8.343652
#> </div><div class='input'><span class='fu'>inverse.predict</span>(<span class='no'>m</span>, <span class='fl'>90</span>, <span class='kw'>ws</span> <span class='kw'>=</span> <span class='fl'>0.145</span>) <span class='co'># 44.1 +- 7.9</span></div><div class='output co'>#> $Prediction
#> [1] 44.06025
#>
#> $`Standard Error`
#> [1] 2.829162
#>
#> $Confidence
#> [1] 7.855012
#>
#> $`Confidence Limits`
#> [1] 36.20523 51.91526
#> </div><div class='input'>
<span class='co'># The LOD is only calculated for models from unweighted regression</span>
<span class='co'># with this version of chemCal</span>
<span class='no'>m0</span> <span class='kw'><-</span> <span class='fu'>lm</span>(<span class='no'>y</span> ~ <span class='no'>x</span>)
<span class='fu'>lod</span>(<span class='no'>m0</span>)</div><div class='output co'>#> $x
#> [1] 5.407085
#>
#> $y
#> 1
#> 13.63911
#> </div><div class='input'>
<span class='co'># Limit of quantification from unweighted regression</span>
<span class='fu'>loq</span>(<span class='no'>m0</span>)</div><div class='output co'>#> $x
#> [1] 13.97764
#>
#> $y
#> 1
#> 30.6235
#> </div><div class='input'>
<span class='co'># For calculating the limit of quantification from a model from weighted</span>
<span class='co'># regression, we need to supply weights, internally used for inverse.predict</span>
<span class='co'># If we are not using a variance function, we can use the weight from</span>
<span class='co'># the above example as a first approximation (x = 15 is close to our</span>
<span class='co'># loq approx 14 from above).</span>
<span class='fu'>loq</span>(<span class='no'>m</span>, <span class='kw'>w.loq</span> <span class='kw'>=</span> <span class='fl'>1.67</span>)</div><div class='output co'>#> $x
#> [1] 7.346195
#>
#> $y
#> 1
#> 17.90777
#> </div><div class='input'># The weight for the loq should therefore be derived at x = 7.3 instead
# of 15, but the graphical procedure of Massart (p. 201) to derive the
# variances on which the weights are based is quite inaccurate anyway.
</div></pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="sidebar">
<h2>Contents</h2>
<ul class="nav nav-pills nav-stacked">
<li><a href="#format">Format</a></li>
<li><a href="#source">Source</a></li>
<li><a href="#examples">Examples</a></li>
</ul>
</div>
</div>
<footer>
<div class="copyright">
<p>Developed by Johannes Ranke.</p>
</div>
<div class="pkgdown">
<p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p>
</div>
</footer>
</div>
</body>
</html>
|