aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorranke <ranke@5fad18fb-23f0-0310-ab10-e59a3bee62b4>2006-05-23 07:33:22 +0000
committerranke <ranke@5fad18fb-23f0-0310-ab10-e59a3bee62b4>2006-05-23 07:33:22 +0000
commitf381f9a6a8a47b89ec25cd627833a7248da7932b (patch)
tree3155c1f5b2f5810a453aa8cb8a8f44f5920b01e8
parente12be874ff477509b737ad09bf05144a7fbedac2 (diff)
Don't do calplot and lod for linear models from weighted
regression any more, since this is not supported (PR#8877). git-svn-id: http://kriemhild.uft.uni-bremen.de/svn/chemCal@13 5fad18fb-23f0-0310-ab10-e59a3bee62b4
-rw-r--r--DESCRIPTION4
-rw-r--r--R/calplot.R52
-rw-r--r--R/inverse.predict.lm.R2
-rw-r--r--R/lod.R19
-rw-r--r--R/loq.R16
-rw-r--r--TODO5
-rw-r--r--inst/doc/chemCal-001.pdf4
-rw-r--r--inst/doc/chemCal.Rnw13
-rw-r--r--inst/doc/chemCal.log4
-rw-r--r--inst/doc/chemCal.pdfbin107306 -> 107447 bytes
-rw-r--r--man/calplot.lm.Rd4
-rw-r--r--man/din32645.Rd37
-rw-r--r--man/lod.Rd27
-rw-r--r--man/loq.Rd9
-rw-r--r--tests/din32645.R7
-rw-r--r--tests/din32645.Rout.save43
-rw-r--r--tests/massart97.R12
-rw-r--r--tests/massart97.Rout.save54
18 files changed, 262 insertions, 50 deletions
diff --git a/DESCRIPTION b/DESCRIPTION
index 8dc884e..689bbca 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,6 +1,6 @@
Package: chemCal
-Version: 0.05-11
-Date: 2006-05-16
+Version: 0.05-13
+Date: 2006-05-17
Title: Calibration functions for analytical chemistry
Author: Johannes Ranke <jranke@uni-bremen.de>
Maintainer: Johannes Ranke <jranke@uni-bremen.de>
diff --git a/R/calplot.R b/R/calplot.R
index 2deed5a..753d333 100644
--- a/R/calplot.R
+++ b/R/calplot.R
@@ -1,21 +1,36 @@
-calplot <- function(object, xlim = "auto", ylim = "auto",
- xlab = "Concentration", ylab = "Response", alpha=0.05)
+calplot <- function(object,
+ xlim = c("auto","auto"), ylim = c("auto","auto"),
+ xlab = "Concentration", ylab = "Response", alpha=0.05,
+ varfunc = NULL)
{
UseMethod("calplot")
}
-calplot.default <- function(object, xlim = "auto", ylim = "auto",
- xlab = "Concentration", ylab = "Response", alpha=0.05)
+calplot.default <- function(object,
+ xlim = c("auto","auto"), ylim = c("auto","auto"),
+ xlab = "Concentration", ylab = "Response",
+ alpha=0.05, varfunc = NULL)
{
stop("Calibration plots only implemented for univariate lm objects.")
}
-calplot.lm <- function(object, xlim = "auto", ylim = "auto",
- xlab = "Concentration", ylab = "Response", alpha=0.05)
+calplot.lm <- function(object,
+ xlim = c("auto","auto"), ylim = c("auto","auto"),
+ xlab = "Concentration", ylab = "Response", alpha=0.05,
+ varfunc = NULL)
{
if (length(object$coef) > 2)
stop("More than one independent variable in your model - not implemented")
+ if (length(object$weights) > 0) {
+ stop(paste(
+ "\nConfidence and prediction intervals for weighted linear models require",
+ "weights for the x values from which the predictions are to be generated.",
+ "This is not supported by the internally used predict.lm method.",
+ sep = "\n"
+ ))
+ }
+
if (alpha <= 0 | alpha >= 1)
stop("Alpha should be between 0 and 1 (exclusive)")
@@ -23,18 +38,29 @@ calplot.lm <- function(object, xlim = "auto", ylim = "auto",
level <- 1 - alpha
y <- m$model[[1]]
x <- m$model[[2]]
- newdata <- list(x = seq(0,max(x),length=250))
+ if (xlim[1] == "auto") xlim[1] <- 0
+ if (xlim[2] == "auto") xlim[2] <- max(x)
+ newdata <- list(
+ x = seq(from = xlim[1], to = xlim[2], length=250))
names(newdata) <- names(m$model)[[2]]
- pred.lim <- predict(m, newdata, interval = "prediction",level=level)
- conf.lim <- predict(m, newdata, interval = "confidence",level=level)
- if (xlim == "auto") xlim = c(0,max(x))
- if (ylim == "auto") ylim = range(c(pred.lim,y,0))
+ if (is.null(varfunc)) {
+ varfunc <- if (length(m$weights)) {
+ function(variable) mean(m$weights)
+ } else function(variable) rep(1,250)
+ }
+ pred.lim <- predict(m, newdata, interval = "prediction",
+ level=level, weights.newdata = varfunc(m))
+ conf.lim <- predict(m, newdata, interval = "confidence",
+ level=level)
+ yrange.auto <- range(c(0,pred.lim))
+ if (ylim[1] == "auto") ylim[1] <- yrange.auto[1]
+ if (ylim[2] == "auto") ylim[2] <- yrange.auto[2]
plot(1,
type = "n",
xlab = xlab,
ylab = ylab,
- xlim = xlim,
- ylim = ylim
+ xlim = as.numeric(xlim),
+ ylim = as.numeric(ylim)
)
points(x,y, pch = 21, bg = "yellow")
matlines(newdata[[1]], pred.lim, lty = c(1, 4, 4),
diff --git a/R/inverse.predict.lm.R b/R/inverse.predict.lm.R
index e5f014c..8352c26 100644
--- a/R/inverse.predict.lm.R
+++ b/R/inverse.predict.lm.R
@@ -59,7 +59,7 @@ inverse.predict.rlm <- function(object, newdata, ...,
yx <- split(object$model[[yname]],object$model[[xname]])
n <- length(yx)
- df <- n - length(objects$coef)
+ df <- n - length(object$coef)
x <- as.numeric(names(yx))
ybar <- sapply(yx,mean)
yhatx <- split(object$fitted.values,object$model[[xname]])
diff --git a/R/lod.R b/R/lod.R
index 39ce7b3..54618c8 100644
--- a/R/lod.R
+++ b/R/lod.R
@@ -10,7 +10,18 @@ lod.default <- function(object, ..., alpha = 0.05, beta = 0.05)
lod.lm <- function(object, ..., alpha = 0.05, beta = 0.05)
{
+ if (length(object$weights) > 0) {
+ stop(paste(
+ "\nThe detemination of a lod from calibration models obtained by",
+ "weighted linear regression requires confidence intervals for",
+ "predicted y values taking into account weights for the x values",
+ "from which the predictions are to be generated.",
+ "This is not supported by the internally used predict.lm method.",
+ sep = "\n"
+ ))
+ }
xname <- names(object$model)[[2]]
+ yname <- names(object$model)[[1]]
newdata <- data.frame(0)
names(newdata) <- xname
y0 <- predict(object, newdata, interval="prediction",
@@ -28,7 +39,9 @@ lod.lm <- function(object, ..., alpha = 0.05, beta = 0.05)
}
lod.x <- optimize(f,interval=c(0,max(object$model[[xname]])))$minimum
newdata <- data.frame(x = lod.x)
- names(lod.x) <- xname
- lod.y <- predict(object, newdata = lod.x)
- return(list(x = lod.x, y = lod.y))
+ names(newdata) <- xname
+ lod.y <- predict(object, newdata)
+ lod <- list(lod.x, lod.y)
+ names(lod) <- c(xname, yname)
+ return(lod)
}
diff --git a/R/loq.R b/R/loq.R
index c493a64..ee22d38 100644
--- a/R/loq.R
+++ b/R/loq.R
@@ -10,11 +10,21 @@ loq.default <- function(object, ..., alpha = 0.05, k = 3, n = 1, w = "auto")
loq.lm <- function(object, ..., alpha = 0.05, k = 3, n = 1, w = "auto")
{
+ xname <- names(object$model)[[2]]
+ yname <- names(object$model)[[1]]
f <- function(x) {
- y <- predict(object, data.frame(x = x))
+ newdata <- data.frame(x = x)
+ names(newdata) <- xname
+ y <- predict(object, newdata)
p <- inverse.predict(object, rep(y, n), ws = w, alpha = alpha)
(p[["Prediction"]] - k * p[["Confidence"]])^2
}
- tmp <- optimize(f,interval=c(0,max(object$model$x)))
- return(tmp$minimum)
+ tmp <- optimize(f,interval=c(0,max(object$model[[2]])))
+ loq.x <- tmp$minimum
+ newdata <- data.frame(x = loq.x)
+ names(newdata) <- xname
+ loq.y <- predict(object, newdata)
+ loq <- list(loq.x, loq.y)
+ names(loq) <- c(xname, yname)
+ return(loq)
}
diff --git a/TODO b/TODO
new file mode 100644
index 0000000..1fc44a7
--- /dev/null
+++ b/TODO
@@ -0,0 +1,5 @@
+- lod(): At the moment, it is not possible to calculate an lod for the
+ case of more than one replicates (m is fixed to 1). The formula
+ for the prediction of y from mean(x) in Massart et al, p. 433
+ could be used to generalize this.
+- Write methods for nonlinear calibration functions
diff --git a/inst/doc/chemCal-001.pdf b/inst/doc/chemCal-001.pdf
index 748b5e1..9211cf1 100644
--- a/inst/doc/chemCal-001.pdf
+++ b/inst/doc/chemCal-001.pdf
@@ -2,8 +2,8 @@
%ρ\r
1 0 obj
<<
-/CreationDate (D:20060516214219)
-/ModDate (D:20060516214219)
+/CreationDate (D:20060517131400)
+/ModDate (D:20060517131400)
/Title (R Graphics Output)
/Producer (R 2.3.0)
/Creator (R)
diff --git a/inst/doc/chemCal.Rnw b/inst/doc/chemCal.Rnw
index 26b224f..77888b4 100644
--- a/inst/doc/chemCal.Rnw
+++ b/inst/doc/chemCal.Rnw
@@ -19,7 +19,7 @@ Ron Wehrens led to the belief that it could be heavily improved if the
inverse prediction method given in \cite{massart97} would be implemented,
since it also covers the case of weighted regression.
-At the moment, the package only consists of two functions, working
+At the moment, the package consists of three functions, working
on univariate linear models of class \texttt{lm} or \texttt{rlm}.
When calibrating an analytical method, the first task is to generate
@@ -27,6 +27,10 @@ a suitable model. If we want to use the \chemCal{} functions, we
will have to restrict ourselves to univariate, possibly weighted, linear
regression so far.
+For the weighted case, the function \code{predict.lm} had to be
+rewritten, in order to allow for weights for the x values used to
+predict the y values.
+
Once such a model has been created, the calibration can be graphically
shown by using the \texttt{calplot} function:
@@ -34,12 +38,7 @@ shown by using the \texttt{calplot} function:
library(chemCal)
data(massart97ex3)
attach(massart97ex3)
-yx <- split(y,factor(x))
-ybar <- sapply(yx,mean)
-s <- round(sapply(yx,sd),digits=2)
-w <- round(1/(s^2),digits=3)
-weights <- w[factor(x)]
-m <- lm(y ~ x,w=weights)
+m <- lm(y ~ x, w = rep(0.01,length(x)))
calplot(m)
@
diff --git a/inst/doc/chemCal.log b/inst/doc/chemCal.log
index d399d73..86ecc8e 100644
--- a/inst/doc/chemCal.log
+++ b/inst/doc/chemCal.log
@@ -1,4 +1,4 @@
-This is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) (format=pdflatex 2006.4.5) 16 MAY 2006 21:42
+This is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) (format=pdflatex 2006.4.5) 17 MAY 2006 13:14
entering extended mode
**chemCal.tex
(./chemCal.tex
@@ -346,4 +346,4 @@ type1/bluesky/cm/cmbx12.pfb> </var/cache/fonts/pk/ljfour/jknappen/tc/tctt1000.6
xmf-tetex/fonts/type1/bluesky/cm/cmtt10.pfb></usr/share/texmf-tetex/fonts/type1
/bluesky/cm/cmr10.pfb></usr/share/texmf-tetex/fonts/type1/bluesky/cm/cmr12.pfb>
</usr/share/texmf-tetex/fonts/type1/bluesky/cm/cmr17.pfb>
-Output written on chemCal.pdf (3 pages, 107306 bytes).
+Output written on chemCal.pdf (3 pages, 107447 bytes).
diff --git a/inst/doc/chemCal.pdf b/inst/doc/chemCal.pdf
index 6036bd3..5c6b1ea 100644
--- a/inst/doc/chemCal.pdf
+++ b/inst/doc/chemCal.pdf
Binary files differ
diff --git a/man/calplot.lm.Rd b/man/calplot.lm.Rd
index 6d3f52d..734933d 100644
--- a/man/calplot.lm.Rd
+++ b/man/calplot.lm.Rd
@@ -39,13 +39,15 @@
}
\examples{
# Example of a Calibration plot for a weighted regression
+source("/home/ranke/tmp/r-base-2.3.0/src/library/stats/R/lm.R")
data(massart97ex3)
attach(massart97ex3)
yx <- split(y,factor(x))
s <- round(sapply(yx,sd),digits=2)
w <- round(1/(s^2),digits=3)
weights <- w[factor(x)]
-m <- lm(y ~ x,w=weights)
+m <- lm(y ~ x,w=10 * weights)
+calplot(m)
calplot(m)
}
\author{
diff --git a/man/din32645.Rd b/man/din32645.Rd
index d251b7c..94486c4 100644
--- a/man/din32645.Rd
+++ b/man/din32645.Rd
@@ -14,18 +14,33 @@ data(din32645)
m <- lm(y ~ x, data=din32645)
calplot(m)
(prediction <- inverse.predict(m,3500,alpha=0.01))
-# This should give 0.074 according to DIN (cited from the Dintest test data)
-round(prediction$Confidence,3)
+# This should give 0.07434 according to Dintest test data, as
+# collected from Procontrol 3.1 (isomehr GmbH)
+round(prediction$Confidence,5)
-# According to Dintest, we should get 0.07, but we get 0.0759
-lod(m, alpha = 0.01)
+# According to Dintest test data, we should get 0.0698 for the critical value
+# (decision limit, "Nachweisgrenze")
+(lod <- lod(m, alpha = 0.01, beta = 0.5))
+round(lod$x,4)
-# In German, there is the "Erfassungsgrenze", with k = 2,
-# and we should get 0.14 according to Dintest
-lod(m, k = 2, alpha = 0.01)
+# In German, the smallest detectable value is the "Erfassungsgrenze", and we
+# should get 0.140 according to Dintest test data, but with chemCal, we can't
+# reproduce this,
+lod(m, alpha = 0.01, beta = 0.01)
+# except by using an equivalent to the approximation
+# xD = 2 * Sc / A (Currie 1999, p. 118, or Orange Book, Chapter 18.4.3.7)
+lod.approx <- 2 * lod$x
+round(lod.approx, digits=3)
+# which seems to be the pragmatic definition in DIN 32645, as judging from
+# the Dintest test data.
-# According to Dintest, we should get 0.21, we get 0.212
-loq(m, alpha = 0.01)
+# This accords to the test data from Dintest again, except for the last digit
+# of the value cited for Procontrol 3.1 (0.2121)
+(loq <- loq(m, alpha = 0.01))
+round(loq$x,4)
+# A similar value is obtained using the approximation
+# LQ = 3.04 * LC (Currie 1999, p. 120)
+3.04 * lod(m,alpha = 0.01, beta = 0.5)$x
}
\references{
DIN 32645 (equivalent to ISO 11843)
@@ -33,5 +48,9 @@ loq(m, alpha = 0.01)
Dintest. Plugin for MS Excel for evaluations of calibration data. Written
by Georg Schmitt, University of Heidelberg.
\url{http://www.rzuser.uni-heidelberg.de/~df6/download/dintest.htm}
+
+ Currie, L. A. (1997) Nomenclature in evaluation of analytical methods including
+ detection and quantification capabilities (IUPAC Recommendations 1995).
+ Analytica Chimica Acta 391, 105 - 126.
}
\keyword{datasets}
diff --git a/man/lod.Rd b/man/lod.Rd
index 15f9603..fa8c8ad 100644
--- a/man/lod.Rd
+++ b/man/lod.Rd
@@ -38,18 +38,35 @@
the analyte is present (type II or false negative error), is beta (also a
one-sided significance test).
}
+\note{
+ - The default values for alpha and beta are recommended by IUPAC.
+ - The estimation of the LOD in terms of the analyte amount/concentration
+ xD from the LOD in the signal domain SD is done by simply inverting the
+ calibration function (i.e. assuming a known calibration function).
+}
\references{
+ Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S., Lewi, P.J.,
+ Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and Qualimetrics: Part A,
+ Chapter 13.7.8
+
J. Inczedy, T. Lengyel, and A.M. Ure (2002) International Union of Pure and
Applied Chemistry Compendium of Analytical Nomenclature: Definitive Rules.
Web edition.
+
+ Currie, L. A. (1997) Nomenclature in evaluation of analytical methods including
+ detection and quantification capabilities (IUPAC Recommendations 1995).
+ Analytica Chimica Acta 391, 105 - 126.
}
\examples{
data(din32645)
m <- lm(y ~ x, data = din32645)
- # The decision limit (critical value) is obtained by using beta = 0.5:
- lod(m, alpha = 0.01, beta = 0.5) # approx. Nachweisgrenze in Dintest 2002
- lod(m, alpha = 0.01, beta = 0.01)
- # In the latter case (Erfassungsgrenze), we get a slight deviation from
- # Dintest 2002 test data.
+ lod(m)
+
+ # The critical value (decision limit, German Nachweisgrenze) can be obtained
+ # by using beta = 0.5:
+ lod(m, alpha = 0.01, beta = 0.5)
+ # or approximated by
+ 2 * lod(m, alpha = 0.01, beta = 0.5)$x
+ # for the case of known, constant variance (homoscedastic data)
}
\keyword{manip}
diff --git a/man/loq.Rd b/man/loq.Rd
index 1030399..4850487 100644
--- a/man/loq.Rd
+++ b/man/loq.Rd
@@ -49,6 +49,11 @@
limit of detection is the x value, where the relative error
of the quantification with the given calibration model is 1/k.
}
+\note{
+ IUPAC recommends to base the LOQ on the standard deviation of the
+ signal where x = 0. The approach taken here is to my knowledge
+ original to the chemCal package.
+}
\examples{
data(massart97ex3)
attach(massart97ex3)
@@ -68,9 +73,9 @@
mwy <- lm(y ~ x, w = 1/y)
# Let's do this with one iteration only
- loq(mwy, w = 1 / predict(mwy,list(x = loq(mwy))))
+ loq(mwy, w = 1 / predict(mwy,list(x = loq(mwy)$x)))
# We can get better by doing replicate measurements
- loq(mwy, n = 3, w = 1 / predict(mwy,list(x = loq(mwy))))
+ loq(mwy, n = 3, w = 1 / predict(mwy,list(x = loq(mwy)$x)))
}
\keyword{manip}
diff --git a/tests/din32645.R b/tests/din32645.R
new file mode 100644
index 0000000..dc0aee6
--- /dev/null
+++ b/tests/din32645.R
@@ -0,0 +1,7 @@
+library(chemCal)
+data(din32645)
+m <- lm(y ~ x, data=din32645)
+inverse.predict(m,3500,alpha=0.01)
+lod <- lod(m, alpha = 0.01, beta = 0.5)
+lod(m, alpha = 0.01, beta = 0.01)
+loq <- loq(m, alpha = 0.01)
diff --git a/tests/din32645.Rout.save b/tests/din32645.Rout.save
new file mode 100644
index 0000000..10cd1ab
--- /dev/null
+++ b/tests/din32645.Rout.save
@@ -0,0 +1,43 @@
+
+R : Copyright 2006, The R Foundation for Statistical Computing
+Version 2.3.0 (2006-04-24)
+ISBN 3-900051-07-0
+
+R is free software and comes with ABSOLUTELY NO WARRANTY.
+You are welcome to redistribute it under certain conditions.
+Type 'license()' or 'licence()' for distribution details.
+
+R is a collaborative project with many contributors.
+Type 'contributors()' for more information and
+'citation()' on how to cite R or R packages in publications.
+
+Type 'demo()' for some demos, 'help()' for on-line help, or
+'help.start()' for an HTML browser interface to help.
+Type 'q()' to quit R.
+
+> library(chemCal)
+> data(din32645)
+> m <- lm(y ~ x, data=din32645)
+> inverse.predict(m,3500,alpha=0.01)
+$Prediction
+[1] 0.1054792
+
+$`Standard Error`
+[1] 0.02215619
+
+$Confidence
+[1] 0.07434261
+
+$`Confidence Limits`
+[1] 0.03113656 0.17982178
+
+> lod <- lod(m, alpha = 0.01, beta = 0.5)
+> lod(m, alpha = 0.01, beta = 0.01)
+$x
+[1] 0.132904
+
+$y
+[1] 3764.977
+
+> loq <- loq(m, alpha = 0.01)
+>
diff --git a/tests/massart97.R b/tests/massart97.R
new file mode 100644
index 0000000..7170ec4
--- /dev/null
+++ b/tests/massart97.R
@@ -0,0 +1,12 @@
+library(chemCal)
+data(massart97ex3)
+attach(massart97ex3)
+yx <- split(y,x)
+ybar <- sapply(yx,mean)
+s <- round(sapply(yx,sd),digits=2)
+w <- round(1/(s^2),digits=3)
+weights <- w[factor(x)]
+m <- lm(y ~ x,w=weights)
+# The following concords with the book
+inverse.predict(m, 15, ws = 1.67)
+inverse.predict(m, 90, ws = 0.145)
diff --git a/tests/massart97.Rout.save b/tests/massart97.Rout.save
new file mode 100644
index 0000000..ae50275
--- /dev/null
+++ b/tests/massart97.Rout.save
@@ -0,0 +1,54 @@
+
+R : Copyright 2006, The R Foundation for Statistical Computing
+Version 2.3.0 (2006-04-24)
+ISBN 3-900051-07-0
+
+R is free software and comes with ABSOLUTELY NO WARRANTY.
+You are welcome to redistribute it under certain conditions.
+Type 'license()' or 'licence()' for distribution details.
+
+R is a collaborative project with many contributors.
+Type 'contributors()' for more information and
+'citation()' on how to cite R or R packages in publications.
+
+Type 'demo()' for some demos, 'help()' for on-line help, or
+'help.start()' for an HTML browser interface to help.
+Type 'q()' to quit R.
+
+> library(chemCal)
+> data(massart97ex3)
+> attach(massart97ex3)
+> yx <- split(y,x)
+> ybar <- sapply(yx,mean)
+> s <- round(sapply(yx,sd),digits=2)
+> w <- round(1/(s^2),digits=3)
+> weights <- w[factor(x)]
+> m <- lm(y ~ x,w=weights)
+> # The following concords with the book
+> inverse.predict(m, 15, ws = 1.67)
+$Prediction
+[1] 5.865367
+
+$`Standard Error`
+[1] 0.892611
+
+$Confidence
+[1] 2.478285
+
+$`Confidence Limits`
+[1] 3.387082 8.343652
+
+> inverse.predict(m, 90, ws = 0.145)
+$Prediction
+[1] 44.06025
+
+$`Standard Error`
+[1] 2.829162
+
+$Confidence
+[1] 7.855012
+
+$`Confidence Limits`
+[1] 36.20523 51.91526
+
+>

Contact - Imprint