aboutsummaryrefslogtreecommitdiff
path: root/R
diff options
context:
space:
mode:
authorranke <ranke@5fad18fb-23f0-0310-ab10-e59a3bee62b4>2006-05-23 07:33:22 +0000
committerranke <ranke@5fad18fb-23f0-0310-ab10-e59a3bee62b4>2006-05-23 07:33:22 +0000
commitf381f9a6a8a47b89ec25cd627833a7248da7932b (patch)
tree3155c1f5b2f5810a453aa8cb8a8f44f5920b01e8 /R
parente12be874ff477509b737ad09bf05144a7fbedac2 (diff)
Don't do calplot and lod for linear models from weighted
regression any more, since this is not supported (PR#8877). git-svn-id: http://kriemhild.uft.uni-bremen.de/svn/chemCal@13 5fad18fb-23f0-0310-ab10-e59a3bee62b4
Diffstat (limited to 'R')
-rw-r--r--R/calplot.R52
-rw-r--r--R/inverse.predict.lm.R2
-rw-r--r--R/lod.R19
-rw-r--r--R/loq.R16
4 files changed, 69 insertions, 20 deletions
diff --git a/R/calplot.R b/R/calplot.R
index 2deed5a..753d333 100644
--- a/R/calplot.R
+++ b/R/calplot.R
@@ -1,21 +1,36 @@
-calplot <- function(object, xlim = "auto", ylim = "auto",
- xlab = "Concentration", ylab = "Response", alpha=0.05)
+calplot <- function(object,
+ xlim = c("auto","auto"), ylim = c("auto","auto"),
+ xlab = "Concentration", ylab = "Response", alpha=0.05,
+ varfunc = NULL)
{
UseMethod("calplot")
}
-calplot.default <- function(object, xlim = "auto", ylim = "auto",
- xlab = "Concentration", ylab = "Response", alpha=0.05)
+calplot.default <- function(object,
+ xlim = c("auto","auto"), ylim = c("auto","auto"),
+ xlab = "Concentration", ylab = "Response",
+ alpha=0.05, varfunc = NULL)
{
stop("Calibration plots only implemented for univariate lm objects.")
}
-calplot.lm <- function(object, xlim = "auto", ylim = "auto",
- xlab = "Concentration", ylab = "Response", alpha=0.05)
+calplot.lm <- function(object,
+ xlim = c("auto","auto"), ylim = c("auto","auto"),
+ xlab = "Concentration", ylab = "Response", alpha=0.05,
+ varfunc = NULL)
{
if (length(object$coef) > 2)
stop("More than one independent variable in your model - not implemented")
+ if (length(object$weights) > 0) {
+ stop(paste(
+ "\nConfidence and prediction intervals for weighted linear models require",
+ "weights for the x values from which the predictions are to be generated.",
+ "This is not supported by the internally used predict.lm method.",
+ sep = "\n"
+ ))
+ }
+
if (alpha <= 0 | alpha >= 1)
stop("Alpha should be between 0 and 1 (exclusive)")
@@ -23,18 +38,29 @@ calplot.lm <- function(object, xlim = "auto", ylim = "auto",
level <- 1 - alpha
y <- m$model[[1]]
x <- m$model[[2]]
- newdata <- list(x = seq(0,max(x),length=250))
+ if (xlim[1] == "auto") xlim[1] <- 0
+ if (xlim[2] == "auto") xlim[2] <- max(x)
+ newdata <- list(
+ x = seq(from = xlim[1], to = xlim[2], length=250))
names(newdata) <- names(m$model)[[2]]
- pred.lim <- predict(m, newdata, interval = "prediction",level=level)
- conf.lim <- predict(m, newdata, interval = "confidence",level=level)
- if (xlim == "auto") xlim = c(0,max(x))
- if (ylim == "auto") ylim = range(c(pred.lim,y,0))
+ if (is.null(varfunc)) {
+ varfunc <- if (length(m$weights)) {
+ function(variable) mean(m$weights)
+ } else function(variable) rep(1,250)
+ }
+ pred.lim <- predict(m, newdata, interval = "prediction",
+ level=level, weights.newdata = varfunc(m))
+ conf.lim <- predict(m, newdata, interval = "confidence",
+ level=level)
+ yrange.auto <- range(c(0,pred.lim))
+ if (ylim[1] == "auto") ylim[1] <- yrange.auto[1]
+ if (ylim[2] == "auto") ylim[2] <- yrange.auto[2]
plot(1,
type = "n",
xlab = xlab,
ylab = ylab,
- xlim = xlim,
- ylim = ylim
+ xlim = as.numeric(xlim),
+ ylim = as.numeric(ylim)
)
points(x,y, pch = 21, bg = "yellow")
matlines(newdata[[1]], pred.lim, lty = c(1, 4, 4),
diff --git a/R/inverse.predict.lm.R b/R/inverse.predict.lm.R
index e5f014c..8352c26 100644
--- a/R/inverse.predict.lm.R
+++ b/R/inverse.predict.lm.R
@@ -59,7 +59,7 @@ inverse.predict.rlm <- function(object, newdata, ...,
yx <- split(object$model[[yname]],object$model[[xname]])
n <- length(yx)
- df <- n - length(objects$coef)
+ df <- n - length(object$coef)
x <- as.numeric(names(yx))
ybar <- sapply(yx,mean)
yhatx <- split(object$fitted.values,object$model[[xname]])
diff --git a/R/lod.R b/R/lod.R
index 39ce7b3..54618c8 100644
--- a/R/lod.R
+++ b/R/lod.R
@@ -10,7 +10,18 @@ lod.default <- function(object, ..., alpha = 0.05, beta = 0.05)
lod.lm <- function(object, ..., alpha = 0.05, beta = 0.05)
{
+ if (length(object$weights) > 0) {
+ stop(paste(
+ "\nThe detemination of a lod from calibration models obtained by",
+ "weighted linear regression requires confidence intervals for",
+ "predicted y values taking into account weights for the x values",
+ "from which the predictions are to be generated.",
+ "This is not supported by the internally used predict.lm method.",
+ sep = "\n"
+ ))
+ }
xname <- names(object$model)[[2]]
+ yname <- names(object$model)[[1]]
newdata <- data.frame(0)
names(newdata) <- xname
y0 <- predict(object, newdata, interval="prediction",
@@ -28,7 +39,9 @@ lod.lm <- function(object, ..., alpha = 0.05, beta = 0.05)
}
lod.x <- optimize(f,interval=c(0,max(object$model[[xname]])))$minimum
newdata <- data.frame(x = lod.x)
- names(lod.x) <- xname
- lod.y <- predict(object, newdata = lod.x)
- return(list(x = lod.x, y = lod.y))
+ names(newdata) <- xname
+ lod.y <- predict(object, newdata)
+ lod <- list(lod.x, lod.y)
+ names(lod) <- c(xname, yname)
+ return(lod)
}
diff --git a/R/loq.R b/R/loq.R
index c493a64..ee22d38 100644
--- a/R/loq.R
+++ b/R/loq.R
@@ -10,11 +10,21 @@ loq.default <- function(object, ..., alpha = 0.05, k = 3, n = 1, w = "auto")
loq.lm <- function(object, ..., alpha = 0.05, k = 3, n = 1, w = "auto")
{
+ xname <- names(object$model)[[2]]
+ yname <- names(object$model)[[1]]
f <- function(x) {
- y <- predict(object, data.frame(x = x))
+ newdata <- data.frame(x = x)
+ names(newdata) <- xname
+ y <- predict(object, newdata)
p <- inverse.predict(object, rep(y, n), ws = w, alpha = alpha)
(p[["Prediction"]] - k * p[["Confidence"]])^2
}
- tmp <- optimize(f,interval=c(0,max(object$model$x)))
- return(tmp$minimum)
+ tmp <- optimize(f,interval=c(0,max(object$model[[2]])))
+ loq.x <- tmp$minimum
+ newdata <- data.frame(x = loq.x)
+ names(newdata) <- xname
+ loq.y <- predict(object, newdata)
+ loq <- list(loq.x, loq.y)
+ names(loq) <- c(xname, yname)
+ return(loq)
}

Contact - Imprint