aboutsummaryrefslogtreecommitdiff
path: root/man
diff options
context:
space:
mode:
authorranke <ranke@5fad18fb-23f0-0310-ab10-e59a3bee62b4>2006-05-23 07:33:22 +0000
committerranke <ranke@5fad18fb-23f0-0310-ab10-e59a3bee62b4>2006-05-23 07:33:22 +0000
commitf381f9a6a8a47b89ec25cd627833a7248da7932b (patch)
tree3155c1f5b2f5810a453aa8cb8a8f44f5920b01e8 /man
parente12be874ff477509b737ad09bf05144a7fbedac2 (diff)
Don't do calplot and lod for linear models from weighted
regression any more, since this is not supported (PR#8877). git-svn-id: http://kriemhild.uft.uni-bremen.de/svn/chemCal@13 5fad18fb-23f0-0310-ab10-e59a3bee62b4
Diffstat (limited to 'man')
-rw-r--r--man/calplot.lm.Rd4
-rw-r--r--man/din32645.Rd37
-rw-r--r--man/lod.Rd27
-rw-r--r--man/loq.Rd9
4 files changed, 60 insertions, 17 deletions
diff --git a/man/calplot.lm.Rd b/man/calplot.lm.Rd
index 6d3f52d..734933d 100644
--- a/man/calplot.lm.Rd
+++ b/man/calplot.lm.Rd
@@ -39,13 +39,15 @@
}
\examples{
# Example of a Calibration plot for a weighted regression
+source("/home/ranke/tmp/r-base-2.3.0/src/library/stats/R/lm.R")
data(massart97ex3)
attach(massart97ex3)
yx <- split(y,factor(x))
s <- round(sapply(yx,sd),digits=2)
w <- round(1/(s^2),digits=3)
weights <- w[factor(x)]
-m <- lm(y ~ x,w=weights)
+m <- lm(y ~ x,w=10 * weights)
+calplot(m)
calplot(m)
}
\author{
diff --git a/man/din32645.Rd b/man/din32645.Rd
index d251b7c..94486c4 100644
--- a/man/din32645.Rd
+++ b/man/din32645.Rd
@@ -14,18 +14,33 @@ data(din32645)
m <- lm(y ~ x, data=din32645)
calplot(m)
(prediction <- inverse.predict(m,3500,alpha=0.01))
-# This should give 0.074 according to DIN (cited from the Dintest test data)
-round(prediction$Confidence,3)
+# This should give 0.07434 according to Dintest test data, as
+# collected from Procontrol 3.1 (isomehr GmbH)
+round(prediction$Confidence,5)
-# According to Dintest, we should get 0.07, but we get 0.0759
-lod(m, alpha = 0.01)
+# According to Dintest test data, we should get 0.0698 for the critical value
+# (decision limit, "Nachweisgrenze")
+(lod <- lod(m, alpha = 0.01, beta = 0.5))
+round(lod$x,4)
-# In German, there is the "Erfassungsgrenze", with k = 2,
-# and we should get 0.14 according to Dintest
-lod(m, k = 2, alpha = 0.01)
+# In German, the smallest detectable value is the "Erfassungsgrenze", and we
+# should get 0.140 according to Dintest test data, but with chemCal, we can't
+# reproduce this,
+lod(m, alpha = 0.01, beta = 0.01)
+# except by using an equivalent to the approximation
+# xD = 2 * Sc / A (Currie 1999, p. 118, or Orange Book, Chapter 18.4.3.7)
+lod.approx <- 2 * lod$x
+round(lod.approx, digits=3)
+# which seems to be the pragmatic definition in DIN 32645, as judging from
+# the Dintest test data.
-# According to Dintest, we should get 0.21, we get 0.212
-loq(m, alpha = 0.01)
+# This accords to the test data from Dintest again, except for the last digit
+# of the value cited for Procontrol 3.1 (0.2121)
+(loq <- loq(m, alpha = 0.01))
+round(loq$x,4)
+# A similar value is obtained using the approximation
+# LQ = 3.04 * LC (Currie 1999, p. 120)
+3.04 * lod(m,alpha = 0.01, beta = 0.5)$x
}
\references{
DIN 32645 (equivalent to ISO 11843)
@@ -33,5 +48,9 @@ loq(m, alpha = 0.01)
Dintest. Plugin for MS Excel for evaluations of calibration data. Written
by Georg Schmitt, University of Heidelberg.
\url{http://www.rzuser.uni-heidelberg.de/~df6/download/dintest.htm}
+
+ Currie, L. A. (1997) Nomenclature in evaluation of analytical methods including
+ detection and quantification capabilities (IUPAC Recommendations 1995).
+ Analytica Chimica Acta 391, 105 - 126.
}
\keyword{datasets}
diff --git a/man/lod.Rd b/man/lod.Rd
index 15f9603..fa8c8ad 100644
--- a/man/lod.Rd
+++ b/man/lod.Rd
@@ -38,18 +38,35 @@
the analyte is present (type II or false negative error), is beta (also a
one-sided significance test).
}
+\note{
+ - The default values for alpha and beta are recommended by IUPAC.
+ - The estimation of the LOD in terms of the analyte amount/concentration
+ xD from the LOD in the signal domain SD is done by simply inverting the
+ calibration function (i.e. assuming a known calibration function).
+}
\references{
+ Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S., Lewi, P.J.,
+ Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and Qualimetrics: Part A,
+ Chapter 13.7.8
+
J. Inczedy, T. Lengyel, and A.M. Ure (2002) International Union of Pure and
Applied Chemistry Compendium of Analytical Nomenclature: Definitive Rules.
Web edition.
+
+ Currie, L. A. (1997) Nomenclature in evaluation of analytical methods including
+ detection and quantification capabilities (IUPAC Recommendations 1995).
+ Analytica Chimica Acta 391, 105 - 126.
}
\examples{
data(din32645)
m <- lm(y ~ x, data = din32645)
- # The decision limit (critical value) is obtained by using beta = 0.5:
- lod(m, alpha = 0.01, beta = 0.5) # approx. Nachweisgrenze in Dintest 2002
- lod(m, alpha = 0.01, beta = 0.01)
- # In the latter case (Erfassungsgrenze), we get a slight deviation from
- # Dintest 2002 test data.
+ lod(m)
+
+ # The critical value (decision limit, German Nachweisgrenze) can be obtained
+ # by using beta = 0.5:
+ lod(m, alpha = 0.01, beta = 0.5)
+ # or approximated by
+ 2 * lod(m, alpha = 0.01, beta = 0.5)$x
+ # for the case of known, constant variance (homoscedastic data)
}
\keyword{manip}
diff --git a/man/loq.Rd b/man/loq.Rd
index 1030399..4850487 100644
--- a/man/loq.Rd
+++ b/man/loq.Rd
@@ -49,6 +49,11 @@
limit of detection is the x value, where the relative error
of the quantification with the given calibration model is 1/k.
}
+\note{
+ IUPAC recommends to base the LOQ on the standard deviation of the
+ signal where x = 0. The approach taken here is to my knowledge
+ original to the chemCal package.
+}
\examples{
data(massart97ex3)
attach(massart97ex3)
@@ -68,9 +73,9 @@
mwy <- lm(y ~ x, w = 1/y)
# Let's do this with one iteration only
- loq(mwy, w = 1 / predict(mwy,list(x = loq(mwy))))
+ loq(mwy, w = 1 / predict(mwy,list(x = loq(mwy)$x)))
# We can get better by doing replicate measurements
- loq(mwy, n = 3, w = 1 / predict(mwy,list(x = loq(mwy))))
+ loq(mwy, n = 3, w = 1 / predict(mwy,list(x = loq(mwy)$x)))
}
\keyword{manip}

Contact - Imprint