diff options
Diffstat (limited to 'R/chemCal-package.R')
-rw-r--r-- | R/chemCal-package.R | 194 |
1 files changed, 194 insertions, 0 deletions
diff --git a/R/chemCal-package.R b/R/chemCal-package.R new file mode 100644 index 0000000..8cc8c76 --- /dev/null +++ b/R/chemCal-package.R @@ -0,0 +1,194 @@ +#' Calibration data from DIN 32645 +#' +#' Sample dataset to test the package. +#' +#' +#' @name din32645 +#' @docType data +#' @format A dataframe containing 10 rows of x and y values. +#' @references DIN 32645 (equivalent to ISO 11843), Beuth Verlag, Berlin, 1994 +#' +#' Dintest. Plugin for MS Excel for evaluations of calibration data. Written by +#' Georg Schmitt, University of Heidelberg. Formerly available from the Website +#' of the University of Heidelberg. +#' +#' Currie, L. A. (1997) Nomenclature in evaluation of analytical methods +#' including detection and quantification capabilities (IUPAC Recommendations +#' 1995). Analytica Chimica Acta 391, 105 - 126. +#' @keywords datasets +#' @examples +#' +#' m <- lm(y ~ x, data = din32645) +#' calplot(m) +#' +#' ## Prediction of x with confidence interval +#' prediction <- inverse.predict(m, 3500, alpha = 0.01) +#' +#' # This should give 0.07434 according to test data from Dintest, which +#' # was collected from Procontrol 3.1 (isomehr GmbH) in this case +#' round(prediction$Confidence, 5) +#' +#' ## Critical value: +#' crit <- lod(m, alpha = 0.01, beta = 0.5) +#' +#' # According to DIN 32645, we should get 0.07 for the critical value +#' # (decision limit, "Nachweisgrenze") +#' round(crit$x, 2) +#' # and according to Dintest test data, we should get 0.0698 from +#' round(crit$x, 4) +#' +#' ## Limit of detection (smallest detectable value given alpha and beta) +#' # In German, the smallest detectable value is the "Erfassungsgrenze", and we +#' # should get 0.14 according to DIN, which we achieve by using the method +#' # described in it: +#' lod.din <- lod(m, alpha = 0.01, beta = 0.01, method = "din") +#' round(lod.din$x, 2) +#' +#' ## Limit of quantification +#' # This accords to the test data coming with the test data from Dintest again, +#' # except for the last digits of the value cited for Procontrol 3.1 (0.2121) +#' loq <- loq(m, alpha = 0.01) +#' round(loq$x, 4) +#' +#' # A similar value is obtained using the approximation +#' # LQ = 3.04 * LC (Currie 1999, p. 120) +#' 3.04 * lod(m, alpha = 0.01, beta = 0.5)$x +#' +NULL + + + + + +#' Calibration data from Massart et al. (1997), example 1 +#' +#' Sample dataset from p. 175 to test the package. +#' +#' +#' @name massart97ex1 +#' @docType data +#' @format A dataframe containing 6 observations of x and y data. +#' @source Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S., +#' Lewi, P.J., Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and +#' Qualimetrics: Part A, Chapter 8. +#' @keywords datasets +NULL + + + + + +#' Calibration data from Massart et al. (1997), example 3 +#' +#' Sample dataset from p. 188 to test the package. +#' +#' +#' @name massart97ex3 +#' @docType data +#' @format A dataframe containing 6 levels of x values with 5 observations of y +#' for each level. +#' @source Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S., +#' Lewi, P.J., Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and +#' Qualimetrics: Part A, Chapter 8. +#' @keywords datasets +#' @examples +#' +#' # For reproducing the results for replicate standard measurements in example 8, +#' # we need to do the calibration on the means when using chemCal > 0.2 +#' weights <- with(massart97ex3, { +#' yx <- split(y, x) +#' ybar <- sapply(yx, mean) +#' s <- round(sapply(yx, sd), digits = 2) +#' w <- round(1 / (s^2), digits = 3) +#' }) +#' +#' massart97ex3.means <- aggregate(y ~ x, massart97ex3, mean) +#' +#' m3.means <- lm(y ~ x, w = weights, data = massart97ex3.means) +#' +#' # The following concords with the book p. 200 +#' inverse.predict(m3.means, 15, ws = 1.67) # 5.9 +- 2.5 +#' inverse.predict(m3.means, 90, ws = 0.145) # 44.1 +- 7.9 +#' +#' # The LOD is only calculated for models from unweighted regression +#' # with this version of chemCal +#' m0 <- lm(y ~ x, data = massart97ex3) +#' lod(m0) +#' +#' # Limit of quantification from unweighted regression +#' loq(m0) +#' +#' # For calculating the limit of quantification from a model from weighted +#' # regression, we need to supply weights, internally used for inverse.predict +#' # If we are not using a variance function, we can use the weight from +#' # the above example as a first approximation (x = 15 is close to our +#' # loq approx 14 from above). +#' loq(m3.means, w.loq = 1.67) +#' # The weight for the loq should therefore be derived at x = 7.3 instead +#' # of 15, but the graphical procedure of Massart (p. 201) to derive the +#' # variances on which the weights are based is quite inaccurate anyway. +#' +NULL + + + + + +#' Cadmium concentrations measured by AAS as reported by Rocke and Lorenzato +#' (1995) +#' +#' Dataset reproduced from Table 1 in Rocke and Lorenzato (1995). +#' +#' +#' @name rl95_cadmium +#' @docType data +#' @format A dataframe containing four replicate observations for each of the +#' six calibration standards. +#' @source Rocke, David M. und Lorenzato, Stefan (1995) A two-component model +#' for measurement error in analytical chemistry. Technometrics 37(2), 176-184. +#' @keywords datasets +NULL + + + + + +#' Toluene amounts measured by GC/MS as reported by Rocke and Lorenzato (1995) +#' +#' Dataset reproduced from Table 4 in Rocke and Lorenzato (1995). The toluene +#' amount in the calibration samples is given in picograms per 100 µL. +#' Presumably this is the volume that was injected into the instrument. +#' +#' +#' @name rl95_toluene +#' @docType data +#' @format A dataframe containing four replicate observations for each of the +#' six calibration standards. +#' @source Rocke, David M. und Lorenzato, Stefan (1995) A two-component model +#' for measurement error in analytical chemistry. Technometrics 37(2), 176-184. +#' @keywords datasets +NULL + + + + + +#' Example data for calibration with replicates from University of Toronto +#' +#' Dataset read into R from +#' \url{https://sites.chem.utoronto.ca/chemistry/coursenotes/analsci/stats/files/example14.xls}. +#' +#' +#' @name utstats14 +#' @docType data +#' @format A tibble containing three replicate observations of the response for +#' five calibration concentrations. +#' @source David Stone and Jon Ellis (2011) Statistics in Analytical Chemistry. +#' Tutorial website maintained by the Departments of Chemistry, University of +#' Toronto. +#' \url{https://sites.chem.utoronto.ca/chemistry/coursenotes/analsci/stats/index.html} +#' @keywords datasets +NULL + + + |