diff options
Diffstat (limited to 'R/inverse.predict.lm.R')
-rw-r--r-- | R/inverse.predict.lm.R | 77 |
1 files changed, 73 insertions, 4 deletions
diff --git a/R/inverse.predict.lm.R b/R/inverse.predict.lm.R index 77d548f..031f9d4 100644 --- a/R/inverse.predict.lm.R +++ b/R/inverse.predict.lm.R @@ -1,19 +1,87 @@ -# This is an implementation of Equation (8.28) in the Handbook of Chemometrics -# and Qualimetrics, Part A, Massart et al (1997), page 200, validated with -# Example 8 on the same page, extended as specified in the package vignette - +#' Predict x from y for a linear calibration +#' +#' This function predicts x values using a univariate linear model that has +#' been generated for the purpose of calibrating a measurement method. +#' Prediction intervals are given at the specified confidence level. The +#' calculation method was taken from Massart et al. (1997). In particular, +#' Equations 8.26 and 8.28 were combined in order to yield a general treatment +#' of inverse prediction for univariate linear models, taking into account +#' weights that have been used to create the linear model, and at the same time +#' providing the possibility to specify a precision in sample measurements +#' differing from the precision in standard samples used for the calibration. +#' This is elaborated in the package vignette. +#' +#' This is an implementation of Equation (8.28) in the Handbook of Chemometrics +#' and Qualimetrics, Part A, Massart et al (1997), page 200, validated with +#' Example 8 on the same page, extended as specified in the package vignette +#' +#' @aliases inverse.predict inverse.predict.lm inverse.predict.rlm +#' inverse.predict.default +#' @param object A univariate model object of class \code{\link{lm}} or +#' \code{\link[MASS:rlm]{rlm}} with model formula \code{y ~ x} or \code{y ~ x - +#' 1}. +#' @param newdata A vector of observed y values for one sample. +#' @param \dots Placeholder for further arguments that might be needed by +#' future implementations. +#' @param ws The weight attributed to the sample. This argument is obligatory +#' if \code{object} has weights. +#' @param alpha The error tolerance level for the confidence interval to be +#' reported. +#' @param var.s The estimated variance of the sample measurements. The default +#' is to take the residual standard error from the calibration and to adjust it +#' using \code{ws}, if applicable. This means that \code{var.s} overrides +#' \code{ws}. +#' @return A list containing the predicted x value, its standard error and a +#' confidence interval. +#' @note The function was validated with examples 7 and 8 from Massart et al. +#' (1997). Note that the behaviour of inverse.predict changed with chemCal +#' version 0.2.1. Confidence intervals for x values obtained from calibrations +#' with replicate measurements did not take the variation about the means into +#' account. Please refer to the vignette for details. +#' @references Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, +#' S., Lewi, P.J., Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and +#' Qualimetrics: Part A, p. 200 +#' @importFrom stats optimize predict qt +#' @examples +#' +#' # This is example 7 from Chapter 8 in Massart et al. (1997) +#' m <- lm(y ~ x, data = massart97ex1) +#' inverse.predict(m, 15) # 6.1 +- 4.9 +#' inverse.predict(m, 90) # 43.9 +- 4.9 +#' inverse.predict(m, rep(90,5)) # 43.9 +- 3.2 +#' +#' # For reproducing the results for replicate standard measurements in example 8, +#' # we need to do the calibration on the means when using chemCal > 0.2 +#' weights <- with(massart97ex3, { +#' yx <- split(y, x) +#' ybar <- sapply(yx, mean) +#' s <- round(sapply(yx, sd), digits = 2) +#' w <- round(1 / (s^2), digits = 3) +#' }) +#' +#' massart97ex3.means <- aggregate(y ~ x, massart97ex3, mean) +#' +#' m3.means <- lm(y ~ x, w = weights, data = massart97ex3.means) +#' +#' inverse.predict(m3.means, 15, ws = 1.67) # 5.9 +- 2.5 +#' inverse.predict(m3.means, 90, ws = 0.145) # 44.1 +- 7.9 +#' +#' +#' @export inverse.predict <- function(object, newdata, ..., ws = "auto", alpha = 0.05, var.s = "auto") { UseMethod("inverse.predict") } +#' @export inverse.predict.default <- function(object, newdata, ..., ws = "auto", alpha = 0.05, var.s = "auto") { stop("Inverse prediction only implemented for univariate lm objects.") } +#' @export inverse.predict.lm <- function(object, newdata, ..., ws = "auto", alpha = 0.05, var.s = "auto") { @@ -31,6 +99,7 @@ inverse.predict.lm <- function(object, newdata, ..., ws = ws, alpha = alpha, var.s = var.s, w = w, xname = xname, yname = yname) } +#' @export inverse.predict.rlm <- function(object, newdata, ..., ws = "auto", alpha = 0.05, var.s = "auto") { |