diff options
Diffstat (limited to 'R/inverse.predict.lm.R')
-rw-r--r-- | R/inverse.predict.lm.R | 95 |
1 files changed, 72 insertions, 23 deletions
diff --git a/R/inverse.predict.lm.R b/R/inverse.predict.lm.R index f438d99..f1921e4 100644 --- a/R/inverse.predict.lm.R +++ b/R/inverse.predict.lm.R @@ -1,40 +1,89 @@ # This is an implementation of Equation (8.28) in the Handbook of Chemometrics -# and Qualimetrics, Part A, Massart et al, page 200, validated with Example 8 -# on the same page +# and Qualimetrics, Part A, Massart et al (1997), page 200, validated with +# Example 8 on the same page -inverse.predict <- function(object, newdata, alpha=0.05) +inverse.predict <- function(object, newdata, + ws = ifelse(length(object$weights) > 0, mean(object$weights), 1), + alpha=0.05, ss = "auto") { UseMethod("inverse.predict") } -inverse.predict.default <- function(object, newdata, alpha=0.05) +inverse.predict.default <- function(object, newdata, + ws = ifelse(length(object$weights) > 0, mean(object$weights), 1), + alpha=0.05, ss = "auto") { stop("Inverse prediction only implemented for univariate lm objects.") } -inverse.predict.lm <- function(object, newdata, alpha=0.05) +inverse.predict.lm <- function(object, newdata, + ws = ifelse(length(object$weights) > 0, mean(object$weights), 1), + alpha=0.05, ss = "auto") { - if (is.list(newdata)) { - if (!is.null(newdata$y)) - newdata <- newdata$y - else - stop("Newdata list should contain element newdata$y") - } + if (length(object$coef) > 2) + stop("More than one independent variable in your model - not implemented") + + if (alpha <= 0 | alpha >= 1) + stop("Alpha should be between 0 and 1 (exclusive)") + + ybars <- mean(newdata) + m <- length(newdata) - if (is.matrix(newdata)) { - Y <- newdata - Ybar <- apply(Y,1,mean) - nrepl <- ncol(Y) + yx <- split(object$model$y,object$model$x) + n <- length(yx) + x <- as.numeric(names(yx)) + ybar <- sapply(yx,mean) + if (length(object$weights) > 0) { + wx <- split(object$weights,object$model$x) + w <- sapply(wx,mean) + } else { + w <- rep(1,n) } - else { - Y <- as.vector(newdata) - Ybar <- Y - nrepl <- 1 + yhatx <- split(object$fitted.values,object$model$x) + yhat <- sapply(yhatx,mean) + se <- sqrt(sum(w*(ybar - yhat)^2)/(n-2)) + if (ss == "auto") { + ss <- se + } else { + ss <- ss } - if (length(object$coef) > 2) - stop("Inverse prediction not yet implemented for more than one independent variable") + b1 <- object$coef[["x"]] - if (alpha <= 0 | alpha >= 1) - stop("Alpha should be between 0 and 1 (exclusive)") + ybarw <- sum(w * ybar)/sum(w) + +# The commented out code for sxhats is equation 8.28 without changes. It has +# been replaced by the code below, in order to be able to take into account a +# precision in the sample measurements that differs from the precision in the +# calibration samples. + +# sxhats <- se/b1 * sqrt( +# 1/(ws * m) + +# 1/sum(w) + +# (ybars - ybarw)^2 * sum(w) / +# (b1^2 * (sum(w) * sum(w * x^2) - sum(w * x)^2)) +# ) + +# This is equation 8.28, but with the possibility to take into account a +# different precision measurement of the sample and standard solutions +# in analogy to equation 8.26 + sxhats <- 1/b1 * sqrt( + ss^2/(ws * m) + + se^2 * (1/sum(w) + + (ybars - ybarw)^2 * sum(w) / + (b1^2 * (sum(w) * sum(w * x^2) - sum(w * x)^2))) + ) + + if (names(object$coef)[1] == "(Intercept)") { + b0 <- object$coef[["(Intercept)"]] + } else { + b0 <- 0 + } + + xs <- (ybars - b0) / b1 + t <- qt(1-0.5*alpha, n - 2) + conf <- t * sxhats + result <- list("Prediction"=xs,"Standard Error"=sxhats, + "Confidence"=conf, "Confidence Limits"=c(xs - conf, xs + conf)) + return(result) } |