diff options
Diffstat (limited to 'R/lod.R')
-rw-r--r-- | R/lod.R | 53 |
1 files changed, 0 insertions, 53 deletions
diff --git a/R/lod.R b/R/lod.R deleted file mode 100644 index f5bbb7d..0000000 --- a/R/lod.R +++ /dev/null @@ -1,53 +0,0 @@ -lod <- function(object, ..., alpha = 0.05, beta = 0.05, method = "default") -{ - UseMethod("lod") -} - -lod.default <- function(object, ..., alpha = 0.05, beta = 0.05, method = "default") -{ - stop("lod is only implemented for univariate lm objects.") -} - -lod.lm <- function(object, ..., alpha = 0.05, beta = 0.05, method = "default") -{ - if (length(object$weights) > 0) { - stop(paste( - "\nThe detemination of a lod from calibration models obtained by", - "weighted linear regression requires confidence intervals for", - "predicted y values taking into account weights for the x values", - "from which the predictions are to be generated.", - "This is not supported by the internally used predict.lm method.", - sep = "\n" - )) - } - xname <- names(object$model)[[2]] - yname <- names(object$model)[[1]] - newdata <- data.frame(0) - names(newdata) <- xname - y0 <- predict(object, newdata, interval = "prediction", - level = 1 - 2 * alpha) - yc <- y0[[1,"upr"]] - if (method == "din") { - y0.d <- predict(object, newdata, interval = "prediction", - level = 1 - 2 * beta) - deltay <- y0.d[[1, "upr"]] - y0.d[[1, "fit"]] - lod.y <- yc + deltay - lod.x <- inverse.predict(object, lod.y)$Prediction - } else { - f <- function(x) { - newdata <- data.frame(x) - names(newdata) <- xname - pi.y <- predict(object, newdata, interval = "prediction", - level = 1 - 2 * beta) - yd <- pi.y[[1,"lwr"]] - (yd - yc)^2 - } - lod.x <- optimize(f,interval=c(0,max(object$model[[xname]])))$minimum - newdata <- data.frame(x = lod.x) - names(newdata) <- xname - lod.y <- predict(object, newdata) - } - lod <- list(lod.x, lod.y) - names(lod) <- c(xname, yname) - return(lod) -} |