diff options
Diffstat (limited to 'branches/0.1/chemCal/R/calplot.R')
-rw-r--r-- | branches/0.1/chemCal/R/calplot.R | 80 |
1 files changed, 80 insertions, 0 deletions
diff --git a/branches/0.1/chemCal/R/calplot.R b/branches/0.1/chemCal/R/calplot.R new file mode 100644 index 0000000..6aed9c0 --- /dev/null +++ b/branches/0.1/chemCal/R/calplot.R @@ -0,0 +1,80 @@ +calplot <- function(object, + xlim = c("auto", "auto"), ylim = c("auto", "auto"), + xlab = "Concentration", ylab = "Response", alpha = 0.05, + varfunc = NULL) +{ + UseMethod("calplot") +} + +calplot.default <- function(object, + xlim = c("auto","auto"), ylim = c("auto","auto"), + xlab = "Concentration", ylab = "Response", + alpha=0.05, varfunc = NULL) +{ + stop("Calibration plots only implemented for univariate lm objects.") +} + +calplot.lm <- function(object, + xlim = c("auto","auto"), ylim = c("auto","auto"), + xlab = "Concentration", ylab = "Response", alpha=0.05, + varfunc = NULL) +{ + if (length(object$coef) > 2) + stop("More than one independent variable in your model - not implemented") + + if (alpha <= 0 | alpha >= 1) + stop("Alpha should be between 0 and 1 (exclusive)") + + m <- object + level <- 1 - alpha + y <- m$model[[1]] + x <- m$model[[2]] + if (xlim[1] == "auto") xlim[1] <- 0 + if (xlim[2] == "auto") xlim[2] <- max(x) + xlim <- as.numeric(xlim) + newdata <- list( + x = seq(from = xlim[[1]], to = xlim[[2]], length=250)) + names(newdata) <- names(m$model)[[2]] + if (is.null(varfunc)) { + varfunc <- if (length(m$weights)) { + function(variable) mean(m$weights) + } else function(variable) rep(1,250) + } + pred.lim <- predict(m, newdata, interval = "prediction", + level=level, weights.newdata = varfunc(m)) + conf.lim <- predict(m, newdata, interval = "confidence", + level=level) + yrange.auto <- range(c(0,pred.lim)) + if (ylim[1] == "auto") ylim[1] <- yrange.auto[1] + if (ylim[2] == "auto") ylim[2] <- yrange.auto[2] + plot(1, + type = "n", + xlab = xlab, + ylab = ylab, + xlim = as.numeric(xlim), + ylim = as.numeric(ylim) + ) + points(x,y, pch = 21, bg = "yellow") + matlines(newdata[[1]], pred.lim, lty = c(1, 4, 4), + col = c("black", "red", "red")) + if (length(object$weights) > 0) { + legend(min(x), + max(pred.lim, na.rm = TRUE), + legend = c("Fitted Line", "Confidence Bands"), + lty = c(1, 3), + lwd = 2, + col = c("black", "green4"), + horiz = FALSE, cex = 0.9, bg = "gray95") + } else { + matlines(newdata[[1]], conf.lim, lty = c(1, 3, 3), + col = c("black", "green4", "green4")) + legend(min(x), + max(pred.lim, na.rm = TRUE), + legend = c("Fitted Line", "Confidence Bands", + "Prediction Bands"), + lty = c(1, 3, 4), + lwd = 2, + col = c("black", "green4", "red"), + horiz = FALSE, cex = 0.9, bg = "gray95") + } +} |