diff options
Diffstat (limited to 'branches/0.1/chemCal/man/din32645.Rd')
-rw-r--r-- | branches/0.1/chemCal/man/din32645.Rd | 61 |
1 files changed, 61 insertions, 0 deletions
diff --git a/branches/0.1/chemCal/man/din32645.Rd b/branches/0.1/chemCal/man/din32645.Rd new file mode 100644 index 0000000..cacbf07 --- /dev/null +++ b/branches/0.1/chemCal/man/din32645.Rd @@ -0,0 +1,61 @@ +\name{din32645} +\docType{data} +\alias{din32645} +\title{Calibration data from DIN 32645} +\description{ + Sample dataset to test the package. +} +\usage{data(din32645)} +\format{ + A dataframe containing 10 rows of x and y values. +} +\examples{ +data(din32645) +m <- lm(y ~ x, data = din32645) +calplot(m) + +## Prediction of x with confidence interval +(prediction <- inverse.predict(m, 3500, alpha = 0.01)) + +# This should give 0.07434 according to test data from Dintest, which +# was collected from Procontrol 3.1 (isomehr GmbH) in this case +round(prediction$Confidence,5) + +## Critical value: +(crit <- lod(m, alpha = 0.01, beta = 0.5)) + +# According to DIN 32645, we should get 0.07 for the critical value +# (decision limit, "Nachweisgrenze") +round(crit$x, 2) +# and according to Dintest test data, we should get 0.0698 from +round(crit$x, 4) + +## Limit of detection (smallest detectable value given alpha and beta) +# In German, the smallest detectable value is the "Erfassungsgrenze", and we +# should get 0.14 according to DIN, which we achieve by using the method +# described in it: +lod.din <- lod(m, alpha = 0.01, beta = 0.01, method = "din") +round(lod.din$x, 2) + +## Limit of quantification +# This accords to the test data coming with the test data from Dintest again, +# except for the last digits of the value cited for Procontrol 3.1 (0.2121) +(loq <- loq(m, alpha = 0.01)) +round(loq$x,4) + +# A similar value is obtained using the approximation +# LQ = 3.04 * LC (Currie 1999, p. 120) +3.04 * lod(m,alpha = 0.01, beta = 0.5)$x +} +\references{ + DIN 32645 (equivalent to ISO 11843), Beuth Verlag, Berlin, 1994 + + Dintest. Plugin for MS Excel for evaluations of calibration data. Written + by Georg Schmitt, University of Heidelberg. + \url{http://www.rzuser.uni-heidelberg.de/~df6/download/dintest.htm} + + Currie, L. A. (1997) Nomenclature in evaluation of analytical methods including + detection and quantification capabilities (IUPAC Recommendations 1995). + Analytica Chimica Acta 391, 105 - 126. +} +\keyword{datasets} |