aboutsummaryrefslogtreecommitdiff
path: root/man/massart97ex3.Rd
diff options
context:
space:
mode:
Diffstat (limited to 'man/massart97ex3.Rd')
-rw-r--r--man/massart97ex3.Rd59
1 files changed, 32 insertions, 27 deletions
diff --git a/man/massart97ex3.Rd b/man/massart97ex3.Rd
index eb00e79..e7cd383 100644
--- a/man/massart97ex3.Rd
+++ b/man/massart97ex3.Rd
@@ -3,7 +3,7 @@
\alias{massart97ex3}
\title{Calibration data from Massart et al. (1997), example 3}
\description{
- Sample dataset to test the package.
+ Sample dataset from p. 188 to test the package.
}
\usage{data(massart97ex3)}
\format{
@@ -11,37 +11,42 @@
observations of y for each level.
}
\examples{
-data(massart97ex3)
-attach(massart97ex3)
-yx <- split(y,x)
-ybar <- sapply(yx,mean)
-s <- round(sapply(yx,sd),digits=2)
-w <- round(1/(s^2),digits=3)
-weights <- w[factor(x)]
-m <- lm(y ~ x,w=weights)
-# The following concords with the book
-inverse.predict(m, 15, ws = 1.67)
-inverse.predict(m, 90, ws = 0.145)
+ data(massart97ex3)
+ attach(massart97ex3)
+ yx <- split(y, x)
+ ybar <- sapply(yx, mean)
+ s <- round(sapply(yx, sd), digits = 2)
+ w <- round(1 / (s^2), digits = 3)
+ weights <- w[factor(x)]
+ m <- lm(y ~ x, w = weights)
+ calplot(m)
-# Some of the following examples are commented out, because the require
-# prediction intervals from predict.lm for weighted models, which is not
-# available in R at the moment.
+ # The following concords with the book p. 200
+ inverse.predict(m, 15, ws = 1.67) # 5.9 +- 2.5
+ inverse.predict(m, 90, ws = 0.145) # 44.1 +- 7.9
-#calplot(m)
+ # The LOD is only calculated for models from unweighted regression
+ # with this version of chemCal
+ m0 <- lm(y ~ x)
+ lod(m0)
-m0 <- lm(y ~ x)
-lod(m0)
-#lod(m)
+ # Limit of quantification from unweighted regression
+ m0 <- lm(y ~ x)
+ loq(m0)
-# Now we want to take advantage of the lower weights at lower y values
-#m2 <- lm(y ~ x, w = 1/y)
-# To get a reasonable weight for the lod, we need to estimate it and predict
-# a y value for it
-#yhat.lod <- predict(m,data.frame(x = lod(m2)))
-#lod(m2,w=1/yhat.lod,k=3)
+ # For calculating the limit of quantification from a model from weighted
+ # regression, we need to supply weights, internally used for inverse.predict
+ # If we are not using a variance function, we can use the weight from
+ # the above example as a first approximation (x = 15 is close to our
+ # loq approx 14 from above).
+ loq(m, w.loq = 1.67)
+ # The weight for the loq should therefore be derived at x = 7.3 instead
+ # of 15, but the graphical procedure of Massart (p. 201) to derive the
+ # variances on which the weights are based is quite inaccurate anyway.
}
\source{
- Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S., Lewi, P.J.,
- Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and Qualimetrics: Part A, p. 188
+ Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S., Lewi, P.J.,
+ Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and Qualimetrics: Part A,
+ Chapter 8.
}
\keyword{datasets}

Contact - Imprint