diff options
Diffstat (limited to 'man')
| -rw-r--r-- | man/calm.Rd | 43 | ||||
| -rw-r--r-- | man/calplot.lm.Rd | 55 | ||||
| -rw-r--r-- | man/draper.Rd | 9 | ||||
| -rw-r--r-- | man/inverse.predict.Rd | 65 | ||||
| -rw-r--r-- | man/plot.calm.Rd | 48 | ||||
| -rw-r--r-- | man/predictx.Rd | 37 | 
6 files changed, 129 insertions, 128 deletions
| diff --git a/man/calm.Rd b/man/calm.Rd deleted file mode 100644 index c16f663..0000000 --- a/man/calm.Rd +++ /dev/null @@ -1,43 +0,0 @@ -\name{calm} -\alias{calm} -\alias{print.calm} -\alias{predict.calm} -\alias{summary.calm} -\title{Generate a calibration model} -\description{ -  This function fits a calibration model to the data  -  frame. -} -\usage{ -  calm(data) -} -\arguments{ -  \item{data}{ -    A data frame with numeric x data in the first column and -    numeric y data in the second column. -    } -} -\value{ -  An object of class \code{calm}, which is derived from -  a linear model \code{lm}, the only difference being that -  it contains the additional attributes \code{xname}, -  \code{yname} and \code{intercept}, the latter being a  -  boolean reporting wether the model uses an intercept or not. -}  -\note{ -  The decision if the returned model contains an intercept is taken based on -  the significance of the fitted intercept on a significance level of 0.95. -  The methods \code{\link{print.calm}}, \code{\link{predict.calm}} -  \code{\link{summary.calm}} are just newly assigned names for the -  corresponding methods from the class \code{\link{lm}}. -} -\examples{ -  data(din32645) -  calm(din32645) -} -\author{ -  Johannes Ranke  -  \email{jranke@uni-bremen.de}  -  \url{http://www.uft.uni-bremen.de/chemie/ranke} -} -\keyword{regression} diff --git a/man/calplot.lm.Rd b/man/calplot.lm.Rd new file mode 100644 index 0000000..c2b8116 --- /dev/null +++ b/man/calplot.lm.Rd @@ -0,0 +1,55 @@ +\name{calplot} +\alias{calplot} +\alias{calplot.default} +\alias{calplot.lm} +\title{Plot calibration graphs from univariate linear models} +\description{ +	Produce graphics of calibration data, the fitted model as well +  as prediction and confidence bands.  +} +\usage{ +  calplot(object, xlim = "auto", ylim = "auto",  +  xlab = "Concentration", ylab = "Response", alpha=0.05) +} +\arguments{ +  \item{object}{ +    A univariate model object of class \code{\link{lm}} with model formula +    \code{y ~ x} or \code{y ~ x - 1}. +  } +  \item{xlim}{ +    The limits of the plot on the x axis. +  } +  \item{ylim}{ +    The limits of the plot on the y axis. +  } +  \item{xlab}{ +    The label of the x axis. +  } +  \item{ylab}{ +    The label of the y axis. +  } +  \item{alpha}{ +    The confidence level for the confidence and prediction bands. +  } +} +\value{ +  A plot of the calibration data, of your fitted model as well as lines showing +  the confidence limits as well as the prediction limits. +}  +\examples{ +# Example of a Calibration plot for a weighted regression +data(massart97ex3) +attach(massart97ex3) +yx <- split(y,factor(x)) +s <- round(sapply(yx,sd),digits=2) +w <- round(1/(s^2),digits=3) +weights <- w[factor(x)] +m <- lm(y ~ x,w=weights) +calplot(m) +} +\author{ +  Johannes Ranke  +  \email{jranke@uni-bremen.de}  +  \url{http://www.uft.uni-bremen.de/chemie/ranke} +} +\keyword{regression} diff --git a/man/draper.Rd b/man/draper.Rd new file mode 100644 index 0000000..6a8de00 --- /dev/null +++ b/man/draper.Rd @@ -0,0 +1,9 @@ +\name{draper} +\alias{draper} +\title{Regression example with repeated measurements} +\usage{data(draper)} +\references{Draper and Smith, Applied Regression Analysis (1981), p. 38} +\format{A dataframe with 24 observations on 2 variables} +\description{An example of a regression with multiple measurements per +factor level.} +\keyword{datasets} diff --git a/man/inverse.predict.Rd b/man/inverse.predict.Rd new file mode 100644 index 0000000..48534c4 --- /dev/null +++ b/man/inverse.predict.Rd @@ -0,0 +1,65 @@ +\name{inverse.predict} +\alias{inverse.predict} +\alias{inverse.predict.lm} +\alias{inverse.predict.default} +\title{Predict x from y for a linear calibration} +\usage{inverse.predict(object, newdata,  +  ws = ifelse(length(object$weights) > 0, mean(object$weights), 1), +  alpha=0.05, ss = "auto") +} +\arguments{ +  \item{object}{ +    A univariate model object of class \code{\link{lm}} with model formula +    \code{y ~ x} or \code{y ~ x - 1}. +  } +  \item{newdata}{  +    A vector of observed y values for one sample. +  } +  \item{ws}{  +    The weight attributed to the sample. The default is to take the  +    mean of the weights in the model, if there are any. +  } +  \item{alpha}{ +    The confidence level for the confidence interval to be reported. +  } +  \item{ss}{ +    The estimated standard error of the sample measurements. The  +    default is to take the residual standard error from the calibration. +  } +} +\value{ +  A list containing the predicted x value, its standard error and a +  confidence interval. +} +\description{ +  This function predicts x values using a univariate linear model that has been +  generated for the purpose of calibrating a measurement method. Prediction +  intervals are given at the specified confidence level. +  The calculation method was taken from Massart et al. (1997). In particular, +  Equations 8.26 and 8.28 were combined in order to yield a general treatment +  of inverse prediction for univariate linear models, taking into account  +  weights that have been used to create the linear model, and at the same +  time providing the possibility to specify a precision in sample measurements +  differing from the precision in standard samples used for the calibration. +  This is elaborated in the package vignette. +} +\note{ +  The function was validated with examples 7 and 8 from Massart et al. (1997). +} +\references{ +  Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S., Lewi, P.J., +  Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and Qualimetrics: Part A, +  p. 200 +} +\examples{ +data(massart97ex3) +attach(massart97ex3) +yx <- split(y,factor(x)) +s <- round(sapply(yx,sd),digits=2) +w <- round(1/(s^2),digits=3) +weights <- w[factor(x)] +m <- lm(y ~ x,w=weights) + +inverse.predict(m,c(15)) +} +\keyword{manip} diff --git a/man/plot.calm.Rd b/man/plot.calm.Rd deleted file mode 100644 index bb302c7..0000000 --- a/man/plot.calm.Rd +++ /dev/null @@ -1,48 +0,0 @@ -\name{plot.calm} -\alias{plot.calm} -\title{Plot calibration graphs from calibration models} -\description{ -	Produce graphics of calibration data, the fitted model as well -  as prediction and confidence intervals. -} -\usage{ -  plot.calm(x,...,xunit="",yunit="",measurand="",level=0.95) -} -\arguments{ -  \item{x}{ -    A calibration model of type \code{\link{calm}}. It is named -    x here because the generic plot method expects x to be its  -    first argument. -    } -  \item{...}{ -    I just included this because I wanted to avoid the error messages -    from R CMD check that tell me I should read "Writing R extensions"  -    which I did ... -  } -  \item{xunit}{ -    The unit of the given values on the x axis as a character vector. -    } -  \item{yunit}{ -    The unit of the y axis as a character vector. -    } -  \item{measurand}{  -    The name of what is being measured as a character vector. -    } -  \item{level}{ -    The confidence level of the confidence and prediction bands. Defaults to -    0.95. -    } -} -\value{ -  A plot of the calibration data, of your fitted model as well as lines showing -  the confidence limits and the prediction limits. -}  -\examples{ - -} -\author{ -  Johannes Ranke  -  \email{jranke@uni-bremen.de}  -  \url{http://www.uft.uni-bremen.de/chemie/ranke} -} -\keyword{regression} diff --git a/man/predictx.Rd b/man/predictx.Rd deleted file mode 100644 index a3946b0..0000000 --- a/man/predictx.Rd +++ /dev/null @@ -1,37 +0,0 @@ -\name{predictx} -\alias{predictx} -\title{Predict x from y values for calibration models} -\description{ -  This function predicts x values from y values, as in classical calibration, -  including a confindence interval. -} -\usage{ -  predictx(m,yobs,level=0.95) -} -\arguments{ -  \item{m}{ -    A calibration model of type \code{\link{calm}}. -    } -  \item{yobs}{  -    A vector of observed y values for one sample. -    } -  \item{level}{ -    The confidence level for the confidence interval to be reported. -    } -} -\value{ -  A vector containing the estimate (\code{estimate}), its estimated standard -  deviation (\code{sdxpred}), its estimated confidence (\code{confxpred}). -}  -\examples{ -  data(din32645) -  m <- calm(din32645) -  r <- predictx(m,3500,level=0.95) -  cat("\nThe confidence interval is",r[["estimate"]],"+-",r[["confxpred"]],"\n") -} -\author{ -  Johannes Ranke  -  \email{jranke@uni-bremen.de}  -  \url{http://www.uft.uni-bremen.de/chemie/ranke} -} -\keyword{regression} | 
