diff options
Diffstat (limited to 'man')
-rw-r--r-- | man/calm.Rd | 43 | ||||
-rw-r--r-- | man/calplot.lm.Rd | 55 | ||||
-rw-r--r-- | man/draper.Rd | 9 | ||||
-rw-r--r-- | man/inverse.predict.Rd | 65 | ||||
-rw-r--r-- | man/plot.calm.Rd | 48 | ||||
-rw-r--r-- | man/predictx.Rd | 37 |
6 files changed, 129 insertions, 128 deletions
diff --git a/man/calm.Rd b/man/calm.Rd deleted file mode 100644 index c16f663..0000000 --- a/man/calm.Rd +++ /dev/null @@ -1,43 +0,0 @@ -\name{calm} -\alias{calm} -\alias{print.calm} -\alias{predict.calm} -\alias{summary.calm} -\title{Generate a calibration model} -\description{ - This function fits a calibration model to the data - frame. -} -\usage{ - calm(data) -} -\arguments{ - \item{data}{ - A data frame with numeric x data in the first column and - numeric y data in the second column. - } -} -\value{ - An object of class \code{calm}, which is derived from - a linear model \code{lm}, the only difference being that - it contains the additional attributes \code{xname}, - \code{yname} and \code{intercept}, the latter being a - boolean reporting wether the model uses an intercept or not. -} -\note{ - The decision if the returned model contains an intercept is taken based on - the significance of the fitted intercept on a significance level of 0.95. - The methods \code{\link{print.calm}}, \code{\link{predict.calm}} - \code{\link{summary.calm}} are just newly assigned names for the - corresponding methods from the class \code{\link{lm}}. -} -\examples{ - data(din32645) - calm(din32645) -} -\author{ - Johannes Ranke - \email{jranke@uni-bremen.de} - \url{http://www.uft.uni-bremen.de/chemie/ranke} -} -\keyword{regression} diff --git a/man/calplot.lm.Rd b/man/calplot.lm.Rd new file mode 100644 index 0000000..c2b8116 --- /dev/null +++ b/man/calplot.lm.Rd @@ -0,0 +1,55 @@ +\name{calplot} +\alias{calplot} +\alias{calplot.default} +\alias{calplot.lm} +\title{Plot calibration graphs from univariate linear models} +\description{ + Produce graphics of calibration data, the fitted model as well + as prediction and confidence bands. +} +\usage{ + calplot(object, xlim = "auto", ylim = "auto", + xlab = "Concentration", ylab = "Response", alpha=0.05) +} +\arguments{ + \item{object}{ + A univariate model object of class \code{\link{lm}} with model formula + \code{y ~ x} or \code{y ~ x - 1}. + } + \item{xlim}{ + The limits of the plot on the x axis. + } + \item{ylim}{ + The limits of the plot on the y axis. + } + \item{xlab}{ + The label of the x axis. + } + \item{ylab}{ + The label of the y axis. + } + \item{alpha}{ + The confidence level for the confidence and prediction bands. + } +} +\value{ + A plot of the calibration data, of your fitted model as well as lines showing + the confidence limits as well as the prediction limits. +} +\examples{ +# Example of a Calibration plot for a weighted regression +data(massart97ex3) +attach(massart97ex3) +yx <- split(y,factor(x)) +s <- round(sapply(yx,sd),digits=2) +w <- round(1/(s^2),digits=3) +weights <- w[factor(x)] +m <- lm(y ~ x,w=weights) +calplot(m) +} +\author{ + Johannes Ranke + \email{jranke@uni-bremen.de} + \url{http://www.uft.uni-bremen.de/chemie/ranke} +} +\keyword{regression} diff --git a/man/draper.Rd b/man/draper.Rd new file mode 100644 index 0000000..6a8de00 --- /dev/null +++ b/man/draper.Rd @@ -0,0 +1,9 @@ +\name{draper} +\alias{draper} +\title{Regression example with repeated measurements} +\usage{data(draper)} +\references{Draper and Smith, Applied Regression Analysis (1981), p. 38} +\format{A dataframe with 24 observations on 2 variables} +\description{An example of a regression with multiple measurements per +factor level.} +\keyword{datasets} diff --git a/man/inverse.predict.Rd b/man/inverse.predict.Rd new file mode 100644 index 0000000..48534c4 --- /dev/null +++ b/man/inverse.predict.Rd @@ -0,0 +1,65 @@ +\name{inverse.predict} +\alias{inverse.predict} +\alias{inverse.predict.lm} +\alias{inverse.predict.default} +\title{Predict x from y for a linear calibration} +\usage{inverse.predict(object, newdata, + ws = ifelse(length(object$weights) > 0, mean(object$weights), 1), + alpha=0.05, ss = "auto") +} +\arguments{ + \item{object}{ + A univariate model object of class \code{\link{lm}} with model formula + \code{y ~ x} or \code{y ~ x - 1}. + } + \item{newdata}{ + A vector of observed y values for one sample. + } + \item{ws}{ + The weight attributed to the sample. The default is to take the + mean of the weights in the model, if there are any. + } + \item{alpha}{ + The confidence level for the confidence interval to be reported. + } + \item{ss}{ + The estimated standard error of the sample measurements. The + default is to take the residual standard error from the calibration. + } +} +\value{ + A list containing the predicted x value, its standard error and a + confidence interval. +} +\description{ + This function predicts x values using a univariate linear model that has been + generated for the purpose of calibrating a measurement method. Prediction + intervals are given at the specified confidence level. + The calculation method was taken from Massart et al. (1997). In particular, + Equations 8.26 and 8.28 were combined in order to yield a general treatment + of inverse prediction for univariate linear models, taking into account + weights that have been used to create the linear model, and at the same + time providing the possibility to specify a precision in sample measurements + differing from the precision in standard samples used for the calibration. + This is elaborated in the package vignette. +} +\note{ + The function was validated with examples 7 and 8 from Massart et al. (1997). +} +\references{ + Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S., Lewi, P.J., + Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and Qualimetrics: Part A, + p. 200 +} +\examples{ +data(massart97ex3) +attach(massart97ex3) +yx <- split(y,factor(x)) +s <- round(sapply(yx,sd),digits=2) +w <- round(1/(s^2),digits=3) +weights <- w[factor(x)] +m <- lm(y ~ x,w=weights) + +inverse.predict(m,c(15)) +} +\keyword{manip} diff --git a/man/plot.calm.Rd b/man/plot.calm.Rd deleted file mode 100644 index bb302c7..0000000 --- a/man/plot.calm.Rd +++ /dev/null @@ -1,48 +0,0 @@ -\name{plot.calm} -\alias{plot.calm} -\title{Plot calibration graphs from calibration models} -\description{ - Produce graphics of calibration data, the fitted model as well - as prediction and confidence intervals. -} -\usage{ - plot.calm(x,...,xunit="",yunit="",measurand="",level=0.95) -} -\arguments{ - \item{x}{ - A calibration model of type \code{\link{calm}}. It is named - x here because the generic plot method expects x to be its - first argument. - } - \item{...}{ - I just included this because I wanted to avoid the error messages - from R CMD check that tell me I should read "Writing R extensions" - which I did ... - } - \item{xunit}{ - The unit of the given values on the x axis as a character vector. - } - \item{yunit}{ - The unit of the y axis as a character vector. - } - \item{measurand}{ - The name of what is being measured as a character vector. - } - \item{level}{ - The confidence level of the confidence and prediction bands. Defaults to - 0.95. - } -} -\value{ - A plot of the calibration data, of your fitted model as well as lines showing - the confidence limits and the prediction limits. -} -\examples{ - -} -\author{ - Johannes Ranke - \email{jranke@uni-bremen.de} - \url{http://www.uft.uni-bremen.de/chemie/ranke} -} -\keyword{regression} diff --git a/man/predictx.Rd b/man/predictx.Rd deleted file mode 100644 index a3946b0..0000000 --- a/man/predictx.Rd +++ /dev/null @@ -1,37 +0,0 @@ -\name{predictx} -\alias{predictx} -\title{Predict x from y values for calibration models} -\description{ - This function predicts x values from y values, as in classical calibration, - including a confindence interval. -} -\usage{ - predictx(m,yobs,level=0.95) -} -\arguments{ - \item{m}{ - A calibration model of type \code{\link{calm}}. - } - \item{yobs}{ - A vector of observed y values for one sample. - } - \item{level}{ - The confidence level for the confidence interval to be reported. - } -} -\value{ - A vector containing the estimate (\code{estimate}), its estimated standard - deviation (\code{sdxpred}), its estimated confidence (\code{confxpred}). -} -\examples{ - data(din32645) - m <- calm(din32645) - r <- predictx(m,3500,level=0.95) - cat("\nThe confidence interval is",r[["estimate"]],"+-",r[["confxpred"]],"\n") -} -\author{ - Johannes Ranke - \email{jranke@uni-bremen.de} - \url{http://www.uft.uni-bremen.de/chemie/ranke} -} -\keyword{regression} |