diff options
Diffstat (limited to 'tests')
-rw-r--r-- | tests/din32645.R | 7 | ||||
-rw-r--r-- | tests/din32645.Rout.save | 48 | ||||
-rw-r--r-- | tests/massart97.R | 25 | ||||
-rw-r--r-- | tests/massart97.Rout.save | 128 | ||||
-rw-r--r-- | tests/testthat.R | 4 | ||||
-rw-r--r-- | tests/testthat/test_din32645.R | 33 | ||||
-rw-r--r-- | tests/testthat/test_inverse.predict.R | 43 | ||||
-rw-r--r-- | tests/testthat/test_lod_loq.R | 28 | ||||
-rw-r--r-- | tests/testthat/test_massart.R | 40 |
9 files changed, 148 insertions, 208 deletions
diff --git a/tests/din32645.R b/tests/din32645.R deleted file mode 100644 index e5ffed7..0000000 --- a/tests/din32645.R +++ /dev/null @@ -1,7 +0,0 @@ -require(chemCal) -data(din32645) -m <- lm(y ~ x, data = din32645) -inverse.predict(m, 3500, alpha = 0.01) -lod <- lod(m, alpha = 0.01, beta = 0.5) -lod(m, alpha = 0.01, beta = 0.01) -loq <- loq(m, alpha = 0.01) diff --git a/tests/din32645.Rout.save b/tests/din32645.Rout.save deleted file mode 100644 index 7c9e55d..0000000 --- a/tests/din32645.Rout.save +++ /dev/null @@ -1,48 +0,0 @@ - -R version 3.1.0 (2014-04-10) -- "Spring Dance" -Copyright (C) 2014 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -> require(chemCal) -Loading required package: chemCal -> data(din32645) -> m <- lm(y ~ x, data = din32645) -> inverse.predict(m, 3500, alpha = 0.01) -$Prediction -[1] 0.1054792 - -$`Standard Error` -[1] 0.02215619 - -$Confidence -[1] 0.07434261 - -$`Confidence Limits` -[1] 0.03113656 0.17982178 - -> lod <- lod(m, alpha = 0.01, beta = 0.5) -> lod(m, alpha = 0.01, beta = 0.01) -$x -[1] 0.132909 - -$y - 1 -3765.025 - -> loq <- loq(m, alpha = 0.01) -> -> proc.time() - user system elapsed - 0.472 0.302 0.354 diff --git a/tests/massart97.R b/tests/massart97.R deleted file mode 100644 index 00f837f..0000000 --- a/tests/massart97.R +++ /dev/null @@ -1,25 +0,0 @@ -require(chemCal) -data(massart97ex1) -m <- lm(y ~ x, data = massart97ex1) -inverse.predict(m, 15) # 6.1 +- 4.9 -inverse.predict(m, 90) # 43.9 +- 4.9 -inverse.predict(m, rep(90,5)) # 43.9 +- 3.2 - -data(massart97ex3) -attach(massart97ex3) -yx <- split(y, x) -ybar <- sapply(yx, mean) -s <- round(sapply(yx, sd), digits = 2) -w <- round(1 / (s^2), digits = 3) -weights <- w[factor(x)] -m <- lm(y ~ x, w = weights) -#calplot(m) - -inverse.predict(m, 15, ws = 1.67) # 5.9 +- 2.5 -inverse.predict(m, 90, ws = 0.145) # 44.1 +- 7.9 - -m0 <- lm(y ~ x) -lod(m0) - -loq(m0) -loq(m, w.loq = 1.67) diff --git a/tests/massart97.Rout.save b/tests/massart97.Rout.save deleted file mode 100644 index ce99c30..0000000 --- a/tests/massart97.Rout.save +++ /dev/null @@ -1,128 +0,0 @@ - -R version 3.1.0 (2014-04-10) -- "Spring Dance" -Copyright (C) 2014 The R Foundation for Statistical Computing -Platform: x86_64-pc-linux-gnu (64-bit) - -R is free software and comes with ABSOLUTELY NO WARRANTY. -You are welcome to redistribute it under certain conditions. -Type 'license()' or 'licence()' for distribution details. - -R is a collaborative project with many contributors. -Type 'contributors()' for more information and -'citation()' on how to cite R or R packages in publications. - -Type 'demo()' for some demos, 'help()' for on-line help, or -'help.start()' for an HTML browser interface to help. -Type 'q()' to quit R. - -> require(chemCal) -Loading required package: chemCal -> data(massart97ex1) -> m <- lm(y ~ x, data = massart97ex1) -> inverse.predict(m, 15) # 6.1 +- 4.9 -$Prediction -[1] 6.09381 - -$`Standard Error` -[1] 1.767278 - -$Confidence -[1] 4.906751 - -$`Confidence Limits` -[1] 1.187059 11.000561 - -> inverse.predict(m, 90) # 43.9 +- 4.9 -$Prediction -[1] 43.93983 - -$`Standard Error` -[1] 1.767747 - -$Confidence -[1] 4.908053 - -$`Confidence Limits` -[1] 39.03178 48.84788 - -> inverse.predict(m, rep(90,5)) # 43.9 +- 3.2 -$Prediction -[1] 43.93983 - -$`Standard Error` -[1] 1.141204 - -$Confidence -[1] 3.168489 - -$`Confidence Limits` -[1] 40.77134 47.10832 - -> -> data(massart97ex3) -> attach(massart97ex3) -> yx <- split(y, x) -> ybar <- sapply(yx, mean) -> s <- round(sapply(yx, sd), digits = 2) -> w <- round(1 / (s^2), digits = 3) -> weights <- w[factor(x)] -> m <- lm(y ~ x, w = weights) -> #calplot(m) -> -> inverse.predict(m, 15, ws = 1.67) # 5.9 +- 2.5 -$Prediction -[1] 5.865367 - -$`Standard Error` -[1] 0.8926109 - -$Confidence -[1] 2.478285 - -$`Confidence Limits` -[1] 3.387082 8.343652 - -> inverse.predict(m, 90, ws = 0.145) # 44.1 +- 7.9 -$Prediction -[1] 44.06025 - -$`Standard Error` -[1] 2.829162 - -$Confidence -[1] 7.855012 - -$`Confidence Limits` -[1] 36.20523 51.91526 - -> -> m0 <- lm(y ~ x) -> lod(m0) -$x -[1] 5.407085 - -$y - 1 -13.63911 - -> -> loq(m0) -$x -[1] 13.97764 - -$y - 1 -30.6235 - -> loq(m, w.loq = 1.67) -$x -[1] 7.346195 - -$y - 1 -17.90777 - -> -> proc.time() - user system elapsed - 0.529 0.327 0.443 diff --git a/tests/testthat.R b/tests/testthat.R new file mode 100644 index 0000000..6176830 --- /dev/null +++ b/tests/testthat.R @@ -0,0 +1,4 @@ +library(testthat) +library(chemCal) + +test_check("chemCal") diff --git a/tests/testthat/test_din32645.R b/tests/testthat/test_din32645.R new file mode 100644 index 0000000..e6d2840 --- /dev/null +++ b/tests/testthat/test_din32645.R @@ -0,0 +1,33 @@ +context("Known results for the dataset provided in DIN 32645") + +require(chemCal) + +m <- lm(y ~ x, data = din32645) +prediction <- inverse.predict(m, 3500, alpha = 0.01) + +test_that("We get correct confidence intervals", { + # Result collected from Procontrol 3.1 (isomehr GmbH) + expect_equal(round(prediction$Confidence, 5), 0.07434) +}) + +test_that("We get a correct critical value", { + crit <- lod(m, alpha = 0.01, beta = 0.5) + # DIN 32645 gives 0.07 for the critical value + # (decision limit, "Nachweisgrenze") + expect_equal(round(crit$x, 2), 0.07) + # According to Dintest test data, we should get 0.0698 + expect_equal(round(crit$x, 4), 0.0698) +}) + +test_that("We get a correct smalles detectable value using the DIN method", { + lod.din <- lod(m, alpha = 0.01, beta = 0.01, method = "din") + # DIN 32645 gives 0.14 for the smallest detectable value ("Erfassungsgrenze") + expect_equal(round(lod.din$x, 2), 0.14) +}) + +test_that("We get a correct limit of quantification", { + loq.din <- loq(m, alpha = 0.01) + # The value cited for Procontrol 3.1 (0.2121) deviates + # at the last digit, so we only test for three digits + expect_equal(round(loq.din$x, 3), 0.212) +}) diff --git a/tests/testthat/test_inverse.predict.R b/tests/testthat/test_inverse.predict.R new file mode 100644 index 0000000..61484dc --- /dev/null +++ b/tests/testthat/test_inverse.predict.R @@ -0,0 +1,43 @@ +context("Inverse predictions") + +library(chemCal) + +test_that("Inverse predictions for unweighted regressions are stable", { + m1 <- lm(y ~ x, data = massart97ex1) + + # Known values from chemcal Version 0.1-37 + p1.1 <- inverse.predict(m1, 15) + expect_equal(signif(p1.1$Prediction, 7), 6.09381) + expect_equal(signif(p1.1$`Standard Error`, 7), 1.767278) + expect_equal(signif(p1.1$Confidence, 7), 4.906751) + + p1.2 <- inverse.predict(m1, 90) + expect_equal(signif(p1.2$Prediction, 7), 43.93983) + expect_equal(signif(p1.2$`Standard Error`, 7), 1.767747) + expect_equal(signif(p1.2$Confidence, 7), 4.908053) + + p1.3 <- inverse.predict(m1, rep(90, 5)) + expect_equal(signif(p1.3$Prediction, 7), 43.93983) + expect_equal(signif(p1.3$`Standard Error`, 7), 1.141204) + expect_equal(signif(p1.3$Confidence, 7), 3.168489) +}) + +test_that("Inverse predictions for weighted regressions are stable", { + attach(massart97ex3) + yx <- split(y, x) + ybar <- sapply(yx, mean) + s <- round(sapply(yx, sd), digits = 2) + w <- round(1 / (s^2), digits = 3) + weights <- w[factor(x)] + m3 <- lm(y ~ x, w = weights) + + p3.1 <- inverse.predict(m3, 15, ws = 1.67) + expect_equal(signif(p3.1$Prediction, 7), 5.865367) + expect_equal(signif(p3.1$`Standard Error`, 7), 0.8926109) + expect_equal(signif(p3.1$Confidence, 7), 2.478285) + + p3.2 <- inverse.predict(m3, 90, ws = 0.145) + expect_equal(signif(p3.2$Prediction, 7), 44.06025) + expect_equal(signif(p3.2$`Standard Error`, 7), 2.829162) + expect_equal(signif(p3.2$Confidence, 7), 7.855012) +}) diff --git a/tests/testthat/test_lod_loq.R b/tests/testthat/test_lod_loq.R new file mode 100644 index 0000000..6ba0ad0 --- /dev/null +++ b/tests/testthat/test_lod_loq.R @@ -0,0 +1,28 @@ +context("LOD and LOQ") + +library(chemCal) + +test_that("lod is stable across chemCal versions", { + m <- lm(y ~ x, data = din32645) + lod_1 <- lod(m) + expect_equal(signif(lod_1$x, 7), 0.08655484) + expect_equal(signif(lod_1$y, 7), 3317.154) + + # Critical value (decision limit, Nachweisgrenze) + lod_2 <- lod(m, alpha = 0.01, beta = 0.5) + expect_equal(signif(lod_2$x, 7), 0.0698127) + expect_equal(signif(lod_2$y, 7), 3155.393) +}) + +test_that("loq is stable across chemCal versions", { + m2 <- lm(y ~ x, data = massart97ex3) + loq_1 <- loq(m2) + expect_equal(signif(loq_1$x, 7), 13.97764) + expect_equal(signif(loq_1$y, 7), 30.6235) + + loq_2 <- loq(m2, n = 3) + expect_equal(signif(loq_2$x, 7), 9.971963) + expect_equal(signif(loq_2$y, 7), 22.68539) +}) + + diff --git a/tests/testthat/test_massart.R b/tests/testthat/test_massart.R new file mode 100644 index 0000000..791c2e7 --- /dev/null +++ b/tests/testthat/test_massart.R @@ -0,0 +1,40 @@ +context("Known results for the example datasets provided by Massart (1997)") + +require(chemCal) + +test_that("Inverse predictions for example 1 are correct",{ + m1 <- lm(y ~ x, data = massart97ex1) + + # Known values are from the book + p1.1 <- inverse.predict(m1, 15) + expect_equal(round(p1.1$Prediction, 1), 6.1) + expect_equal(round(p1.1$Confidence, 1), 4.9) + + p1.2 <- inverse.predict(m1, 90) + expect_equal(round(p1.2$Prediction, 1), 43.9) + expect_equal(round(p1.2$Confidence, 1), 4.9) + + p1.3 <- inverse.predict(m1, rep(90, 5)) + expect_equal(round(p1.3$Prediction, 1), 43.9) + expect_equal(round(p1.3$Confidence, 1), 3.2) +}) + + +test_that("Inverse predictions for example 3 are correct",{ + attach(massart97ex3) + yx <- split(y, x) + ybar <- sapply(yx, mean) + s <- round(sapply(yx, sd), digits = 2) + w <- round(1 / (s^2), digits = 3) + weights <- w[factor(x)] + m3 <- lm(y ~ x, w = weights) + + # Known values are from the book + p3.1 <- inverse.predict(m3, 15, ws = 1.67) + expect_equal(round(p3.1$Prediction, 1), 5.9) + expect_equal(round(p3.1$Confidence, 1), 2.5) + + p3.2 <- inverse.predict(m3, 90, ws = 0.145) + expect_equal(round(p3.2$Prediction, 1), 44.1) + expect_equal(round(p3.2$Confidence, 1), 7.9) +}) |