From d36f7665da7ed855885bbbcd17b203d3e8804bab Mon Sep 17 00:00:00 2001
From: Johannes Ranke Overview
@@ -638,25 +617,25 @@ variable.
From within R, get the official chemCal release using
- +install.packages("chemCal")
chemCal works with univariate linear models of class lm
.
Working with one of the datasets coming with chemCal, we can produce a
calibration plot using the calplot
function:
library(chemCal)
+<- lm(y ~ x, data = massart97ex3)
+ m0 calplot(m0)
If you use unweighted regression, as in the above example, we can calculate a Limit Of Detection (LOD) from the calibration data.
- +lod(m0)
+#> $x
+#> [1] 5.407085
+#>
+#> $y
+#> [1] 13.63911
This is the minimum detectable value (German: Erfassungsgrenze), i.e. the value where the probability that the signal is not detected although the analyte is present is below a specified error tolerance @@ -665,53 +644,53 @@ beta (default is 0.05 following the IUPAC recommendation).
i.e. the value that is significantly different from the blank signal with an error tolerance alpha (default is 0.05, again following IUPAC recommendations) by setting beta to 0.5. - +lod(m0, beta = 0.5)
+#> $x
+#> [1] 2.720388
+#>
+#> $y
+#> [1] 8.314841
Furthermore, you can calculate the Limit Of Quantification (LOQ), being defined as the value where the relative error of the quantification given the calibration model reaches a prespecified value (default is 1/3).
- +loq(m0)
+#> $x
+#> [1] 9.627349
+#>
+#> $y
+#> [1] 22.00246
Finally, you can get a confidence interval for the values measured
using the calibration curve, i.e. for the inverse predictions using the
function inverse.predict
.
inverse.predict(m0, 90)
-#> $Prediction
-#> [1] 43.93983
-#>
-#> $`Standard Error`
-#> [1] 1.576985
-#>
-#> $Confidence
-#> [1] 3.230307
-#>
-#> $`Confidence Limits`
-#> [1] 40.70952 47.17014
inverse.predict(m0, 90)
+#> $Prediction
+#> [1] 43.93983
+#>
+#> $`Standard Error`
+#> [1] 1.576985
+#>
+#> $Confidence
+#> [1] 3.230307
+#>
+#> $`Confidence Limits`
+#> [1] 40.70952 47.17014
If you have replicate measurements of the same sample, you can also give a vector of numbers.
-inverse.predict(m0, c(91, 89, 87, 93, 90))
-#> $Prediction
-#> [1] 43.93983
-#>
-#> $`Standard Error`
-#> [1] 0.796884
-#>
-#> $Confidence
-#> [1] 1.632343
-#>
-#> $`Confidence Limits`
-#> [1] 42.30749 45.57217
inverse.predict(m0, c(91, 89, 87, 93, 90))
+#> $Prediction
+#> [1] 43.93983
+#>
+#> $`Standard Error`
+#> [1] 0.796884
+#>
+#> $Confidence
+#> [1] 1.632343
+#>
+#> $`Confidence Limits`
+#> [1] 42.30749 45.57217
You can use the R help system to view documentation, or you can have a look at the online -- cgit v1.2.1