From 73e650114af77582238abf5273e63005e0b2287e Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Mon, 6 Mar 2017 17:00:48 +0100 Subject: Static documentation now built by pkgdown::build_site() --- docs/din32645.html | 188 ----------------------------------------------------- 1 file changed, 188 deletions(-) delete mode 100644 docs/din32645.html (limited to 'docs/din32645.html') diff --git a/docs/din32645.html b/docs/din32645.html deleted file mode 100644 index 8266a10..0000000 --- a/docs/din32645.html +++ /dev/null @@ -1,188 +0,0 @@ - - - - -din32645. chemCal 0.1-37 - - - - - - - - - - - - - - - - - - -
-
- -
- -

Calibration data from DIN 32645

- -
-
-

Usage

-
data(din32645)
- -
-

Description

- -

Sample dataset to test the package.

- -
- -
-

Format

- -

A dataframe containing 10 rows of x and y values.

- -
- -
-

References

- -

DIN 32645 (equivalent to ISO 11843), Beuth Verlag, Berlin, 1994

- -

Dintest. Plugin for MS Excel for evaluations of calibration data. Written - by Georg Schmitt, University of Heidelberg. Formerly available from - the Website of the University of Heidelberg.

- -

Currie, L. A. (1997) Nomenclature in evaluation of analytical methods including - detection and quantification capabilities (IUPAC Recommendations 1995). - Analytica Chimica Acta 391, 105 - 126.

- -
- -

Examples

-
data(din32645) -m <- lm(y ~ x, data = din32645) -calplot(m)
-

-
-## Prediction of x with confidence interval -(prediction <- inverse.predict(m, 3500, alpha = 0.01))
-
$Prediction -[1] 0.1054792 - -$`Standard Error` -[1] 0.02215619 - -$Confidence -[1] 0.07434261 - -$`Confidence Limits` -[1] 0.03113656 0.17982178 - -
-
-# This should give 0.07434 according to test data from Dintest, which -# was collected from Procontrol 3.1 (isomehr GmbH) in this case -round(prediction$Confidence,5)
-
[1] 0.07434 -
-
-## Critical value: -(crit <- lod(m, alpha = 0.01, beta = 0.5))
-
$x -[1] 0.0698127 - -$y - 1 -3155.393 - -
-
-# According to DIN 32645, we should get 0.07 for the critical value -# (decision limit, "Nachweisgrenze") -round(crit$x, 2)
-
[1] 0.07 -
-
# and according to Dintest test data, we should get 0.0698 from -round(crit$x, 4)
-
[1] 0.0698 -
-
-## Limit of detection (smallest detectable value given alpha and beta) -# In German, the smallest detectable value is the "Erfassungsgrenze", and we -# should get 0.14 according to DIN, which we achieve by using the method -# described in it: -lod.din <- lod(m, alpha = 0.01, beta = 0.01, method = "din") -round(lod.din$x, 2)
-
[1] 0.14 -
-
-## Limit of quantification -# This accords to the test data coming with the test data from Dintest again, -# except for the last digits of the value cited for Procontrol 3.1 (0.2121) -(loq <- loq(m, alpha = 0.01))
-
$x -[1] 0.2119575 - -$y - 1 -4528.787 - -
-
round(loq$x,4)
-
[1] 0.212 -
-
-# A similar value is obtained using the approximation -# LQ = 3.04 * LC (Currie 1999, p. 120) -3.04 * lod(m,alpha = 0.01, beta = 0.5)$x
-
[1] 0.2122306 -
-
- -
- - -
- - \ No newline at end of file -- cgit v1.2.1