From b31824f420c9d904ab5f46774183a59e3b86cedd Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Tue, 4 Oct 2016 08:45:23 +0200 Subject: Static documentation built using newer staticdocs::build_site() --- docs/din32645.html | 188 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 188 insertions(+) create mode 100644 docs/din32645.html (limited to 'docs/din32645.html') diff --git a/docs/din32645.html b/docs/din32645.html new file mode 100644 index 0000000..8266a10 --- /dev/null +++ b/docs/din32645.html @@ -0,0 +1,188 @@ + + + + +din32645. chemCal 0.1-37 + + + + + + + + + + + + + + + + + + +
+
+ +
+ +

Calibration data from DIN 32645

+ +
+
+

Usage

+
data(din32645)
+ +
+

Description

+ +

Sample dataset to test the package.

+ +
+ +
+

Format

+ +

A dataframe containing 10 rows of x and y values.

+ +
+ +
+

References

+ +

DIN 32645 (equivalent to ISO 11843), Beuth Verlag, Berlin, 1994

+ +

Dintest. Plugin for MS Excel for evaluations of calibration data. Written + by Georg Schmitt, University of Heidelberg. Formerly available from + the Website of the University of Heidelberg.

+ +

Currie, L. A. (1997) Nomenclature in evaluation of analytical methods including + detection and quantification capabilities (IUPAC Recommendations 1995). + Analytica Chimica Acta 391, 105 - 126.

+ +
+ +

Examples

+
data(din32645) +m <- lm(y ~ x, data = din32645) +calplot(m)
+

+
+## Prediction of x with confidence interval +(prediction <- inverse.predict(m, 3500, alpha = 0.01))
+
$Prediction +[1] 0.1054792 + +$`Standard Error` +[1] 0.02215619 + +$Confidence +[1] 0.07434261 + +$`Confidence Limits` +[1] 0.03113656 0.17982178 + +
+
+# This should give 0.07434 according to test data from Dintest, which +# was collected from Procontrol 3.1 (isomehr GmbH) in this case +round(prediction$Confidence,5)
+
[1] 0.07434 +
+
+## Critical value: +(crit <- lod(m, alpha = 0.01, beta = 0.5))
+
$x +[1] 0.0698127 + +$y + 1 +3155.393 + +
+
+# According to DIN 32645, we should get 0.07 for the critical value +# (decision limit, "Nachweisgrenze") +round(crit$x, 2)
+
[1] 0.07 +
+
# and according to Dintest test data, we should get 0.0698 from +round(crit$x, 4)
+
[1] 0.0698 +
+
+## Limit of detection (smallest detectable value given alpha and beta) +# In German, the smallest detectable value is the "Erfassungsgrenze", and we +# should get 0.14 according to DIN, which we achieve by using the method +# described in it: +lod.din <- lod(m, alpha = 0.01, beta = 0.01, method = "din") +round(lod.din$x, 2)
+
[1] 0.14 +
+
+## Limit of quantification +# This accords to the test data coming with the test data from Dintest again, +# except for the last digits of the value cited for Procontrol 3.1 (0.2121) +(loq <- loq(m, alpha = 0.01))
+
$x +[1] 0.2119575 + +$y + 1 +4528.787 + +
+
round(loq$x,4)
+
[1] 0.212 +
+
+# A similar value is obtained using the approximation +# LQ = 3.04 * LC (Currie 1999, p. 120) +3.04 * lod(m,alpha = 0.01, beta = 0.5)$x
+
[1] 0.2122306 +
+
+ +
+ + +
+ + \ No newline at end of file -- cgit v1.2.1