From b31824f420c9d904ab5f46774183a59e3b86cedd Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Tue, 4 Oct 2016 08:45:23 +0200 Subject: Static documentation built using newer staticdocs::build_site() --- docs/inverse.predict.html | 204 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 204 insertions(+) create mode 100644 docs/inverse.predict.html (limited to 'docs/inverse.predict.html') diff --git a/docs/inverse.predict.html b/docs/inverse.predict.html new file mode 100644 index 0000000..4d66549 --- /dev/null +++ b/docs/inverse.predict.html @@ -0,0 +1,204 @@ + + + + +inverse.predict. chemCal 0.1-37 + + + + + + + + + + + + + + + + + + +
+
+ +
+ +

Predict x from y for a linear calibration

+ +
+
+

Usage

+
inverse.predict(object, newdata, ...,
+  ws, alpha=0.05, var.s = "auto")
+ +

Arguments

+
+
object
+
+ A univariate model object of class lm or + rlm + with model formula y ~ x or y ~ x - 1. +
+
newdata
+
+ A vector of observed y values for one sample. +
+
...
+
+ Placeholder for further arguments that might be needed by + future implementations. +
+
ws
+
+ The weight attributed to the sample. This argument is obligatory + if object has weights. +
+
alpha
+
+ The error tolerance level for the confidence interval to be reported. +
+
var.s
+
+ The estimated variance of the sample measurements. The default is to take + the residual standard error from the calibration and to adjust it + using ws, if applicable. This means that var.s + overrides ws. +
+
+ +
+

Value

+ +

+ A list containing the predicted x value, its standard error and a + confidence interval. +

+ +
+ +
+

Description

+ +

This function predicts x values using a univariate linear model that has been + generated for the purpose of calibrating a measurement method. Prediction + intervals are given at the specified confidence level. + The calculation method was taken from Massart et al. (1997). In particular, + Equations 8.26 and 8.28 were combined in order to yield a general treatment + of inverse prediction for univariate linear models, taking into account + weights that have been used to create the linear model, and at the same + time providing the possibility to specify a precision in sample measurements + differing from the precision in standard samples used for the calibration. + This is elaborated in the package vignette.

+ +
+ +
+

Note

+ +

The function was validated with examples 7 and 8 from Massart et al. (1997).

+ +
+ +
+

References

+ +

Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S., Lewi, P.J., + Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and Qualimetrics: Part A, + p. 200

+ +
+ +

Examples

+
# This is example 7 from Chapter 8 in Massart et al. (1997) +data(massart97ex1) +m <- lm(y ~ x, data = massart97ex1) +inverse.predict(m, 15) # 6.1 +- 4.9
+
$Prediction +[1] 6.09381 + +$`Standard Error` +[1] 1.767278 + +$Confidence +[1] 4.906751 + +$`Confidence Limits` +[1] 1.187059 11.000561 + +
+
inverse.predict(m, 90) # 43.9 +- 4.9
+
$Prediction +[1] 43.93983 + +$`Standard Error` +[1] 1.767747 + +$Confidence +[1] 4.908053 + +$`Confidence Limits` +[1] 39.03178 48.84788 + +
+
inverse.predict(m, rep(90,5)) # 43.9 +- 3.2
+
$Prediction +[1] 43.93983 + +$`Standard Error` +[1] 1.141204 + +$Confidence +[1] 3.168489 + +$`Confidence Limits` +[1] 40.77134 47.10832 + +
+
+ +
+ + +
+ + \ No newline at end of file -- cgit v1.2.1