From 966da79af48c371c05dd8011702ef2bd3b1d1e03 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
calplot(object, xlim = c("auto", "auto"), ylim = c("auto", "auto"), +calplot(object, xlim = c("auto", "auto"), ylim = c("auto", "auto"), xlab = "Concentration", ylab = "Response", alpha=0.05, varfunc = NULL)Arguments
-
lm or
+ | object | +A univariate model object of class y ~ x or y ~ x - 1. |
+
|---|---|
| xlim | +The limits of the plot on the x axis. |
+
| ylim | +The limits of the plot on the y axis. |
+
| xlab | +The label of the x axis. |
+
| ylab | +The label of the y axis. |
+
| alpha | +The error tolerance level for the confidence and prediction bands. Note that this
includes both tails of the Gaussian distribution, unlike the alpha and beta parameters
- used in lod (see note below). |
+
| varfunc | +The variance function for generating the weights in the model. + Currently, this argument is ignored (see note below). |
+
predict.lm, therefore,
- calplot does not draw prediction bands for such models.
- It is possible to compare the calplot prediction bands with the
- lod values if the lod() alpha and beta parameters are
+ calplot does not draw prediction bands for such models.
It is possible to compare the calplot prediction bands with the
+ lod values if the lod() alpha and beta parameters are
half the value of the calplot() alpha parameter.
+calplot(m)data(massart97ex3) m <- lm(y ~ x, data = massart97ex3) -calplot(m)
