From 43d58935483e0d9dda7a74c029e7d7d2adad9ed7 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Wed, 20 May 2020 08:44:47 +0200 Subject: Static documentation rebuilt by pkgdown::build_site() --- docs/reference/din32645.html | 82 ++++++++++++++++++++++++-------------------- 1 file changed, 45 insertions(+), 37 deletions(-) (limited to 'docs/reference/din32645.html') diff --git a/docs/reference/din32645.html b/docs/reference/din32645.html index 8d46c24..6af5152 100644 --- a/docs/reference/din32645.html +++ b/docs/reference/din32645.html @@ -8,21 +8,29 @@ Calibration data from DIN 32645 — din32645 • chemCal + - + - - + + + + + + + - + + - + - - + + + @@ -30,10 +38,10 @@ - + - + @@ -47,9 +55,10 @@ + - +
@@ -95,6 +108,7 @@
+
@@ -106,17 +120,15 @@
-

Sample dataset to test the package.

-
-
data(din32645)
- +
data(din32645)
+ +

Format

A dataframe containing 10 rows of x and y values.

-

References

DIN 32645 (equivalent to ISO 11843), Beuth Verlag, Berlin, 1994

@@ -126,66 +138,62 @@

Currie, L. A. (1997) Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Analytica Chimica Acta 391, 105 - 126.

-

Examples

-
m <- lm(y ~ x, data = din32645) +
m <- lm(y ~ x, data = din32645) calplot(m)
## Prediction of x with confidence interval prediction <- inverse.predict(m, 3500, alpha = 0.01) # This should give 0.07434 according to test data from Dintest, which # was collected from Procontrol 3.1 (isomehr GmbH) in this case -round(prediction$Confidence, 5)
#> [1] 0.07434
+round(prediction$Confidence, 5)
#> [1] 0.07434
## Critical value: crit <- lod(m, alpha = 0.01, beta = 0.5) # According to DIN 32645, we should get 0.07 for the critical value # (decision limit, "Nachweisgrenze") -round(crit$x, 2)
#> [1] 0.07
# and according to Dintest test data, we should get 0.0698 from -round(crit$x, 4)
#> [1] 0.0698
+round(crit$x, 2)
#> [1] 0.07
# and according to Dintest test data, we should get 0.0698 from +round(crit$x, 4)
#> [1] 0.0698
## Limit of detection (smallest detectable value given alpha and beta) # In German, the smallest detectable value is the "Erfassungsgrenze", and we # should get 0.14 according to DIN, which we achieve by using the method # described in it: lod.din <- lod(m, alpha = 0.01, beta = 0.01, method = "din") -round(lod.din$x, 2)
#> [1] 0.14
+round(lod.din$x, 2)
#> [1] 0.14
## Limit of quantification # This accords to the test data coming with the test data from Dintest again, # except for the last digits of the value cited for Procontrol 3.1 (0.2121) loq <- loq(m, alpha = 0.01) -round(loq$x, 4)
#> [1] 0.212
+round(loq$x, 4)
#> [1] 0.212
# A similar value is obtained using the approximation # LQ = 3.04 * LC (Currie 1999, p. 120) 3.04 * lod(m, alpha = 0.01, beta = 0.5)$x
#> [1] 0.2122306
- + + + -- cgit v1.2.1