From 73e650114af77582238abf5273e63005e0b2287e Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Mon, 6 Mar 2017 17:00:48 +0100 Subject: Static documentation now built by pkgdown::build_site() --- docs/reference/din32645.html | 175 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 175 insertions(+) create mode 100644 docs/reference/din32645.html (limited to 'docs/reference/din32645.html') diff --git a/docs/reference/din32645.html b/docs/reference/din32645.html new file mode 100644 index 0000000..1b64592 --- /dev/null +++ b/docs/reference/din32645.html @@ -0,0 +1,175 @@ + + + + + + + + +Calibration data from DIN 32645 — din32645 • chemCal + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + +
+ +
+
+ + + +

Sample dataset to test the package.

+ + +
data(din32645)
+ +

Format

+ +

A dataframe containing 10 rows of x and y values.

+ +

References

+ +

DIN 32645 (equivalent to ISO 11843), Beuth Verlag, Berlin, 1994

+

Dintest. Plugin for MS Excel for evaluations of calibration data. Written + by Georg Schmitt, University of Heidelberg. Formerly available from + the Website of the University of Heidelberg.

+

Currie, L. A. (1997) Nomenclature in evaluation of analytical methods including + detection and quantification capabilities (IUPAC Recommendations 1995). + Analytica Chimica Acta 391, 105 - 126.

+ + +

Examples

+
data(din32645) +m <- lm(y ~ x, data = din32645) +calplot(m)
+## Prediction of x with confidence interval +(prediction <- inverse.predict(m, 3500, alpha = 0.01))
#> $Prediction +#> [1] 0.1054792 +#> +#> $`Standard Error` +#> [1] 0.02215619 +#> +#> $Confidence +#> [1] 0.07434261 +#> +#> $`Confidence Limits` +#> [1] 0.03113656 0.17982178 +#>
+# This should give 0.07434 according to test data from Dintest, which +# was collected from Procontrol 3.1 (isomehr GmbH) in this case +round(prediction$Confidence,5)
#> [1] 0.07434
+## Critical value: +(crit <- lod(m, alpha = 0.01, beta = 0.5))
#> $x +#> [1] 0.0698127 +#> +#> $y +#> 1 +#> 3155.393 +#>
+# According to DIN 32645, we should get 0.07 for the critical value +# (decision limit, "Nachweisgrenze") +round(crit$x, 2)
#> [1] 0.07
# and according to Dintest test data, we should get 0.0698 from +round(crit$x, 4)
#> [1] 0.0698
+## Limit of detection (smallest detectable value given alpha and beta) +# In German, the smallest detectable value is the "Erfassungsgrenze", and we +# should get 0.14 according to DIN, which we achieve by using the method +# described in it: +lod.din <- lod(m, alpha = 0.01, beta = 0.01, method = "din") +round(lod.din$x, 2)
#> [1] 0.14
+## Limit of quantification +# This accords to the test data coming with the test data from Dintest again, +# except for the last digits of the value cited for Procontrol 3.1 (0.2121) +(loq <- loq(m, alpha = 0.01))
#> $x +#> [1] 0.2119575 +#> +#> $y +#> 1 +#> 4528.787 +#>
round(loq$x,4)
#> [1] 0.212
+# A similar value is obtained using the approximation +# LQ = 3.04 * LC (Currie 1999, p. 120) +3.04 * lod(m,alpha = 0.01, beta = 0.5)$x
#> [1] 0.2122306
+
+ +
+ + +
+ + + -- cgit v1.2.1