From 966da79af48c371c05dd8011702ef2bd3b1d1e03 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Thu, 1 Mar 2018 10:35:09 +0100 Subject: Static documentation rebuilt using current pkgdown --- docs/reference/din32645.html | 31 ++++++++++++++++++++----------- 1 file changed, 20 insertions(+), 11 deletions(-) (limited to 'docs/reference/din32645.html') diff --git a/docs/reference/din32645.html b/docs/reference/din32645.html index 65a9268..5e2bf2d 100644 --- a/docs/reference/din32645.html +++ b/docs/reference/din32645.html @@ -18,19 +18,28 @@ + + + + + + + - + + + @@ -76,7 +85,7 @@

Sample dataset to test the package.

-
data(din32645)
+
data(din32645)

Format

@@ -85,10 +94,10 @@

References

DIN 32645 (equivalent to ISO 11843), Beuth Verlag, Berlin, 1994

-

Dintest. Plugin for MS Excel for evaluations of calibration data. Written +

Dintest. Plugin for MS Excel for evaluations of calibration data. Written by Georg Schmitt, University of Heidelberg. Formerly available from the Website of the University of Heidelberg.

-

Currie, L. A. (1997) Nomenclature in evaluation of analytical methods including +

Currie, L. A. (1997) Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Analytica Chimica Acta 391, 105 - 126.

@@ -96,9 +105,9 @@

Examples

data(din32645) m <- lm(y ~ x, data = din32645) -calplot(m)
+calplot(m)
## Prediction of x with confidence interval -(prediction <- inverse.predict(m, 3500, alpha = 0.01))
#> $Prediction +(prediction <- inverse.predict(m, 3500, alpha = 0.01))
#> $Prediction #> [1] 0.1054792 #> #> $`Standard Error` @@ -114,7 +123,7 @@ # was collected from Procontrol 3.1 (isomehr GmbH) in this case round(prediction$Confidence,5)
#> [1] 0.07434
## Critical value: -(crit <- lod(m, alpha = 0.01, beta = 0.5))
#> $x +(crit <- lod(m, alpha = 0.01, beta = 0.5))
#> $x #> [1] 0.0698127 #> #> $y @@ -129,12 +138,12 @@ # In German, the smallest detectable value is the "Erfassungsgrenze", and we # should get 0.14 according to DIN, which we achieve by using the method # described in it: -lod.din <- lod(m, alpha = 0.01, beta = 0.01, method = "din") +lod.din <- lod(m, alpha = 0.01, beta = 0.01, method = "din") round(lod.din$x, 2)
#> [1] 0.14
## Limit of quantification # This accords to the test data coming with the test data from Dintest again, # except for the last digits of the value cited for Procontrol 3.1 (0.2121) -(loq <- loq(m, alpha = 0.01))
#> $x +(loq <- loq(m, alpha = 0.01))
#> $x #> [1] 0.2119575 #> #> $y @@ -143,7 +152,7 @@ #>
round(loq$x,4)
#> [1] 0.212
# A similar value is obtained using the approximation # LQ = 3.04 * LC (Currie 1999, p. 120) -3.04 * lod(m,alpha = 0.01, beta = 0.5)$x
#> [1] 0.2122306
+3.04 * lod(m,alpha = 0.01, beta = 0.5)$x
#> [1] 0.2122306
-

Site built with pkgdown.

+

Site built with pkgdown.

-- cgit v1.2.1