From f4fcef8228ebd5a1a73bc6edc47b5efa259c2e20 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Wed, 23 Mar 2022 10:32:36 +0100 Subject: Use 'investr' conditionally in tests, updates Most prominently, a README was added, giving a nice overview for the people visiting the github page, the package page on CRAN, or the online docs at pkgdown.jrwb.de. The maintainer e-mail address was also updated. --- docs/reference/din32645.html | 206 +++++++++++++++---------------------------- 1 file changed, 73 insertions(+), 133 deletions(-) (limited to 'docs/reference/din32645.html') diff --git a/docs/reference/din32645.html b/docs/reference/din32645.html index b46103c..1c02f36 100644 --- a/docs/reference/din32645.html +++ b/docs/reference/din32645.html @@ -1,67 +1,12 @@ - - - - - - - -Calibration data from DIN 32645 — din32645 • chemCal - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Calibration data from DIN 32645 — din32645 • chemCal - - - - + + -
-
- -
- -
+
-
data(din32645)
- - -

Format

+
+
data(din32645)
+
+
+

Format

A dataframe containing 10 rows of x and y values.

-

References

- +
+
+

References

DIN 32645 (equivalent to ISO 11843), Beuth Verlag, Berlin, 1994

Dintest. Plugin for MS Excel for evaluations of calibration data. Written by Georg Schmitt, University of Heidelberg. Formerly available from @@ -138,69 +72,75 @@

Currie, L. A. (1997) Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Analytica Chimica Acta 391, 105 - 126.

+
-

Examples

-
m <- lm(y ~ x, data = din32645) -calplot(m) -
-## Prediction of x with confidence interval -prediction <- inverse.predict(m, 3500, alpha = 0.01) - -# This should give 0.07434 according to test data from Dintest, which -# was collected from Procontrol 3.1 (isomehr GmbH) in this case -round(prediction$Confidence, 5) -
#> [1] 0.07434
-## Critical value: -crit <- lod(m, alpha = 0.01, beta = 0.5) - -# According to DIN 32645, we should get 0.07 for the critical value -# (decision limit, "Nachweisgrenze") -round(crit$x, 2) -
#> [1] 0.07
# and according to Dintest test data, we should get 0.0698 from -round(crit$x, 4) -
#> [1] 0.0698
-## Limit of detection (smallest detectable value given alpha and beta) -# In German, the smallest detectable value is the "Erfassungsgrenze", and we -# should get 0.14 according to DIN, which we achieve by using the method -# described in it: -lod.din <- lod(m, alpha = 0.01, beta = 0.01, method = "din") -round(lod.din$x, 2) -
#> [1] 0.14
-## Limit of quantification -# This accords to the test data coming with the test data from Dintest again, -# except for the last digits of the value cited for Procontrol 3.1 (0.2121) -loq <- loq(m, alpha = 0.01) -round(loq$x, 4) -
#> [1] 0.212
-# A similar value is obtained using the approximation -# LQ = 3.04 * LC (Currie 1999, p. 120) -3.04 * lod(m, alpha = 0.01, beta = 0.5)$x -
#> [1] 0.2122306
+
+

Examples

+
m <- lm(y ~ x, data = din32645)
+calplot(m)
+
+
+## Prediction of x with confidence interval
+prediction <- inverse.predict(m, 3500, alpha = 0.01)
+
+# This should give 0.07434 according to test data from Dintest, which 
+# was collected from Procontrol 3.1 (isomehr GmbH) in this case
+round(prediction$Confidence, 5)
+#> [1] 0.07434
+
+## Critical value:
+crit <- lod(m, alpha = 0.01, beta = 0.5)
+
+# According to DIN 32645, we should get 0.07 for the critical value
+# (decision limit, "Nachweisgrenze")
+round(crit$x, 2)
+#> [1] 0.07
+# and according to Dintest test data, we should get 0.0698 from
+round(crit$x, 4)
+#> [1] 0.0698
+
+## Limit of detection (smallest detectable value given alpha and beta)
+# In German, the smallest detectable value is the "Erfassungsgrenze", and we
+# should get 0.14 according to DIN, which we achieve by using the method 
+# described in it:
+lod.din <- lod(m, alpha = 0.01, beta = 0.01, method = "din")
+round(lod.din$x, 2)
+#> [1] 0.14
+
+## Limit of quantification
+# This accords to the test data coming with the test data from Dintest again, 
+# except for the last digits of the value cited for Procontrol 3.1 (0.2121)
+loq <- loq(m, alpha = 0.01)
+round(loq$x, 4)
+#> [1] 0.212
+
+# A similar value is obtained using the approximation 
+# LQ = 3.04 * LC (Currie 1999, p. 120)
+3.04 * lod(m, alpha = 0.01, beta = 0.5)$x
+#> [1] 0.2122306
+
+
+
-
- - + + -- cgit v1.2.1