From 73e650114af77582238abf5273e63005e0b2287e Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Mon, 6 Mar 2017 17:00:48 +0100 Subject: Static documentation now built by pkgdown::build_site() --- docs/reference/massart97ex3.html | 188 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 188 insertions(+) create mode 100644 docs/reference/massart97ex3.html (limited to 'docs/reference/massart97ex3.html') diff --git a/docs/reference/massart97ex3.html b/docs/reference/massart97ex3.html new file mode 100644 index 0000000..2ec8f6f --- /dev/null +++ b/docs/reference/massart97ex3.html @@ -0,0 +1,188 @@ + + + + + + + + +Calibration data from Massart et al. (1997), example 3 — massart97ex3 • chemCal + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + +
+ +
+
+ + + +

Sample dataset from p. 188 to test the package.

+ + +
data(massart97ex3)
+ +

Format

+ +

A dataframe containing 6 levels of x values with 5 + observations of y for each level.

+ +

Source

+ +

Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S., Lewi, P.J., + Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and Qualimetrics: Part A, + Chapter 8.

+ + +

Examples

+
data(massart97ex3) +attach(massart97ex3)
#> The following objects are masked from massart97ex3 (pos = 3): +#> +#> x, y
yx <- split(y, x) +ybar <- sapply(yx, mean) +s <- round(sapply(yx, sd), digits = 2) +w <- round(1 / (s^2), digits = 3) +weights <- w[factor(x)] +m <- lm(y ~ x, w = weights) +calplot(m)
#> Warning: Assuming constant prediction variance even though model fit is weighted
+# The following concords with the book p. 200 +inverse.predict(m, 15, ws = 1.67) # 5.9 +- 2.5
#> $Prediction +#> [1] 5.865367 +#> +#> $`Standard Error` +#> [1] 0.8926109 +#> +#> $Confidence +#> [1] 2.478285 +#> +#> $`Confidence Limits` +#> [1] 3.387082 8.343652 +#>
inverse.predict(m, 90, ws = 0.145) # 44.1 +- 7.9
#> $Prediction +#> [1] 44.06025 +#> +#> $`Standard Error` +#> [1] 2.829162 +#> +#> $Confidence +#> [1] 7.855012 +#> +#> $`Confidence Limits` +#> [1] 36.20523 51.91526 +#>
+# The LOD is only calculated for models from unweighted regression +# with this version of chemCal +m0 <- lm(y ~ x) +lod(m0)
#> $x +#> [1] 5.407085 +#> +#> $y +#> 1 +#> 13.63911 +#>
+# Limit of quantification from unweighted regression +loq(m0)
#> $x +#> [1] 13.97764 +#> +#> $y +#> 1 +#> 30.6235 +#>
+# For calculating the limit of quantification from a model from weighted +# regression, we need to supply weights, internally used for inverse.predict +# If we are not using a variance function, we can use the weight from +# the above example as a first approximation (x = 15 is close to our +# loq approx 14 from above). +loq(m, w.loq = 1.67)
#> $x +#> [1] 7.346195 +#> +#> $y +#> 1 +#> 17.90777 +#>
# The weight for the loq should therefore be derived at x = 7.3 instead +# of 15, but the graphical procedure of Massart (p. 201) to derive the +# variances on which the weights are based is quite inaccurate anyway.
+
+ +
+ + +
+ + + -- cgit v1.2.1