From f4fcef8228ebd5a1a73bc6edc47b5efa259c2e20 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Wed, 23 Mar 2022 10:32:36 +0100 Subject: Use 'investr' conditionally in tests, updates Most prominently, a README was added, giving a nice overview for the people visiting the github page, the package page on CRAN, or the online docs at pkgdown.jrwb.de. The maintainer e-mail address was also updated. --- docs/reference/massart97ex3.html | 276 +++++++++++++++------------------------ 1 file changed, 107 insertions(+), 169 deletions(-) (limited to 'docs/reference/massart97ex3.html') diff --git a/docs/reference/massart97ex3.html b/docs/reference/massart97ex3.html index 4cbf7ce..4196882 100644 --- a/docs/reference/massart97ex3.html +++ b/docs/reference/massart97ex3.html @@ -1,67 +1,12 @@ - - - - - - - -Calibration data from Massart et al. (1997), example 3 — massart97ex3 • chemCal - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Calibration data from Massart et al. (1997), example 3 — massart97ex3 • chemCal - - - - + + -
-
- -
- -
+
-
massart97ex3
- - -

Format

+
+
massart97ex3
+
+
+

Format

A dataframe containing 6 levels of x values with 5 observations of y for each level.

-

Source

- +
+
+

Source

Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S., Lewi, P.J., Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and Qualimetrics: Part A, Chapter 8.

+
-

Examples

-
# For reproducing the results for replicate standard measurements in example 8, -# we need to do the calibration on the means when using chemCal > 0.2 -weights <- with(massart97ex3, { - yx <- split(y, x) - ybar <- sapply(yx, mean) - s <- round(sapply(yx, sd), digits = 2) - w <- round(1 / (s^2), digits = 3) -}) - -massart97ex3.means <- aggregate(y ~ x, massart97ex3, mean) - -m3.means <- lm(y ~ x, w = weights, data = massart97ex3.means) - -# The following concords with the book p. 200 -inverse.predict(m3.means, 15, ws = 1.67) # 5.9 +- 2.5 -
#> $Prediction -#> [1] 5.865367 -#> -#> $`Standard Error` -#> [1] 0.8926109 -#> -#> $Confidence -#> [1] 2.478285 -#> -#> $`Confidence Limits` -#> [1] 3.387082 8.343652 -#>
inverse.predict(m3.means, 90, ws = 0.145) # 44.1 +- 7.9 -
#> $Prediction -#> [1] 44.06025 -#> -#> $`Standard Error` -#> [1] 2.829162 -#> -#> $Confidence -#> [1] 7.855012 -#> -#> $`Confidence Limits` -#> [1] 36.20523 51.91526 -#>
-# The LOD is only calculated for models from unweighted regression -# with this version of chemCal -m0 <- lm(y ~ x, data = massart97ex3) -lod(m0) -
#> $x -#> [1] 5.407085 -#> -#> $y -#> [1] 13.63911 -#>
-# Limit of quantification from unweighted regression -loq(m0) -
#> $x -#> [1] 9.627349 -#> -#> $y -#> [1] 22.00246 -#>
-# For calculating the limit of quantification from a model from weighted -# regression, we need to supply weights, internally used for inverse.predict -# If we are not using a variance function, we can use the weight from -# the above example as a first approximation (x = 15 is close to our -# loq approx 14 from above). -loq(m3.means, w.loq = 1.67) -
#> $x -#> [1] 7.346195 -#> -#> $y -#> [1] 17.90777 -#>
# The weight for the loq should therefore be derived at x = 7.3 instead -# of 15, but the graphical procedure of Massart (p. 201) to derive the -# variances on which the weights are based is quite inaccurate anyway. -
+
+

Examples

+
# For reproducing the results for replicate standard measurements in example 8,
+# we need to do the calibration on the means when using chemCal > 0.2
+weights <- with(massart97ex3, {
+  yx <- split(y, x)
+  ybar <- sapply(yx, mean)
+  s <- round(sapply(yx, sd), digits = 2)
+  w <- round(1 / (s^2), digits = 3)
+})
+
+massart97ex3.means <- aggregate(y ~ x, massart97ex3, mean)
+
+m3.means <- lm(y ~ x, w = weights, data = massart97ex3.means)
+
+# The following concords with the book p. 200
+inverse.predict(m3.means, 15, ws = 1.67)  # 5.9 +- 2.5
+#> $Prediction
+#> [1] 5.865367
+#> 
+#> $`Standard Error`
+#> [1] 0.8926109
+#> 
+#> $Confidence
+#> [1] 2.478285
+#> 
+#> $`Confidence Limits`
+#> [1] 3.387082 8.343652
+#> 
+inverse.predict(m3.means, 90, ws = 0.145) # 44.1 +- 7.9
+#> $Prediction
+#> [1] 44.06025
+#> 
+#> $`Standard Error`
+#> [1] 2.829162
+#> 
+#> $Confidence
+#> [1] 7.855012
+#> 
+#> $`Confidence Limits`
+#> [1] 36.20523 51.91526
+#> 
+
+# The LOD is only calculated for models from unweighted regression
+# with this version of chemCal
+m0 <- lm(y ~ x, data = massart97ex3) 
+lod(m0)
+#> $x
+#> [1] 5.407085
+#> 
+#> $y
+#> [1] 13.63911
+#> 
+
+# Limit of quantification from unweighted regression
+loq(m0)
+#> $x
+#> [1] 9.627349
+#> 
+#> $y
+#> [1] 22.00246
+#> 
+
+# For calculating the limit of quantification from a model from weighted
+# regression, we need to supply weights, internally used for inverse.predict
+# If we are not using a variance function, we can use the weight from
+# the above example as a first approximation (x = 15 is close to our
+# loq approx 14 from above).
+loq(m3.means, w.loq = 1.67)
+#> $x
+#> [1] 7.346195
+#> 
+#> $y
+#> [1] 17.90777
+#> 
+# The weight for the loq should therefore be derived at x = 7.3 instead
+# of 15, but the graphical procedure of Massart (p. 201) to derive the 
+# variances on which the weights are based is quite inaccurate anyway. 
+
+
+
-
- - + + -- cgit v1.2.1