From ae12e32d074ba3839c1b71d500d9a0757b0d8d10 Mon Sep 17 00:00:00 2001 From: ranke Date: Sat, 22 Aug 2015 09:29:17 +0000 Subject: Add static HTML documentation git-svn-id: http://kriemhild.uft.uni-bremen.de/svn/chemCal@37 5fad18fb-23f0-0310-ab10-e59a3bee62b4 --- inst/web/din32645.html | 194 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 194 insertions(+) create mode 100644 inst/web/din32645.html (limited to 'inst/web/din32645.html') diff --git a/inst/web/din32645.html b/inst/web/din32645.html new file mode 100644 index 0000000..115d250 --- /dev/null +++ b/inst/web/din32645.html @@ -0,0 +1,194 @@ + + + + +din32645. chemCal 0.1-35.900 + + + + + + + + + + + + + + + + + +
+
+ +
+ +

Calibration data from DIN 32645

+ +
+
+

Usage

+
data(din32645)
+ +
+

Description

+ +

Sample dataset to test the package.

+ +
+ +
+

Format

+ +

A dataframe containing 10 rows of x and y values.

+ +
+ +
+

References

+ +

DIN 32645 (equivalent to ISO 11843), Beuth Verlag, Berlin, 1994

+ +

Dintest. Plugin for MS Excel for evaluations of calibration data. Written + by Georg Schmitt, University of Heidelberg. + http://www.rzuser.uni-heidelberg.de/~df6/download/dintest.htm

+ +

Currie, L. A. (1997) Nomenclature in evaluation of analytical methods including + detection and quantification capabilities (IUPAC Recommendations 1995). + Analytica Chimica Acta 391, 105 - 126.

+ +
+ +

Examples

+
data(din32645) +m <- lm(y ~ x, data = din32645) +calplot(m) +
+

+
+## Prediction of x with confidence interval +(prediction <- inverse.predict(m, 3500, alpha = 0.01)) +
+
$Prediction +[1] 0.1054792 + +$`Standard Error` +[1] 0.02215619 + +$Confidence +[1] 0.07434261 + +$`Confidence Limits` +[1] 0.03113656 0.17982178 + +
+
+# This should give 0.07434 according to test data from Dintest, which +# was collected from Procontrol 3.1 (isomehr GmbH) in this case +round(prediction$Confidence,5) +
+
[1] 0.07434 +
+
+## Critical value: +(crit <- lod(m, alpha = 0.01, beta = 0.5)) +
+
$x +[1] 0.0698127 + +$y + 1 +3155.393 + +
+
+# According to DIN 32645, we should get 0.07 for the critical value +# (decision limit, "Nachweisgrenze") +round(crit$x, 2) +
+
[1] 0.07 +
+
# and according to Dintest test data, we should get 0.0698 from +round(crit$x, 4) +
+
[1] 0.0698 +
+
+## Limit of detection (smallest detectable value given alpha and beta) +# In German, the smallest detectable value is the "Erfassungsgrenze", and we +# should get 0.14 according to DIN, which we achieve by using the method +# described in it: +lod.din <- lod(m, alpha = 0.01, beta = 0.01, method = "din") +round(lod.din$x, 2) +
+
[1] 0.14 +
+
+## Limit of quantification +# This accords to the test data coming with the test data from Dintest again, +# except for the last digits of the value cited for Procontrol 3.1 (0.2121) +(loq <- loq(m, alpha = 0.01)) +
+
$x +[1] 0.2119575 + +$y + 1 +4528.787 + +
+
round(loq$x,4) +
+
[1] 0.212 +
+
+# A similar value is obtained using the approximation +# LQ = 3.04 * LC (Currie 1999, p. 120) +3.04 * lod(m,alpha = 0.01, beta = 0.5)$x +
+
[1] 0.2122306 +
+
+
+ + + +
+
+ + +
+ + \ No newline at end of file -- cgit v1.2.1