From ae12e32d074ba3839c1b71d500d9a0757b0d8d10 Mon Sep 17 00:00:00 2001 From: ranke Date: Sat, 22 Aug 2015 09:29:17 +0000 Subject: Add static HTML documentation git-svn-id: http://kriemhild.uft.uni-bremen.de/svn/chemCal@37 5fad18fb-23f0-0310-ab10-e59a3bee62b4 --- inst/web/massart97ex3.html | 198 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 198 insertions(+) create mode 100644 inst/web/massart97ex3.html (limited to 'inst/web/massart97ex3.html') diff --git a/inst/web/massart97ex3.html b/inst/web/massart97ex3.html new file mode 100644 index 0000000..9f94ed8 --- /dev/null +++ b/inst/web/massart97ex3.html @@ -0,0 +1,198 @@ + + + + +massart97ex3. chemCal 0.1-35.900 + + + + + + + + + + + + + + + + + +
+
+ +
+ +

Calibration data from Massart et al. (1997), example 3

+ +
+
+

Usage

+
data(massart97ex3)
+ +
+

Description

+ +

Sample dataset from p. 188 to test the package.

+ +
+ +
+

Format

+ +

A dataframe containing 6 levels of x values with 5 + observations of y for each level.

+ +
+ +
+

Source

+ +

Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S., Lewi, P.J., + Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and Qualimetrics: Part A, + Chapter 8.

+ +
+ +

Examples

+
data(massart97ex3) +attach(massart97ex3) +
+Die folgenden Objekte sind maskiert von massart97ex3 (pos = 3): + + x, y + +
yx <- split(y, x) +ybar <- sapply(yx, mean) +s <- round(sapply(yx, sd), digits = 2) +w <- round(1 / (s^2), digits = 3) +weights <- w[factor(x)] +m <- lm(y ~ x, w = weights) +calplot(m) +
+Warning message: +Assuming constant prediction variance even though model fit is weighted + +

+
+# The following concords with the book p. 200 +inverse.predict(m, 15, ws = 1.67) # 5.9 +- 2.5 +
+
$Prediction +[1] 5.865367 + +$`Standard Error` +[1] 0.8926109 + +$Confidence +[1] 2.478285 + +$`Confidence Limits` +[1] 3.387082 8.343652 + +
+
inverse.predict(m, 90, ws = 0.145) # 44.1 +- 7.9 +
+
$Prediction +[1] 44.06025 + +$`Standard Error` +[1] 2.829162 + +$Confidence +[1] 7.855012 + +$`Confidence Limits` +[1] 36.20523 51.91526 + +
+
+# The LOD is only calculated for models from unweighted regression +# with this version of chemCal +m0 <- lm(y ~ x) +lod(m0) +
+
$x +[1] 5.407085 + +$y + 1 +13.63911 + +
+
+# Limit of quantification from unweighted regression +loq(m0) +
+
$x +[1] 13.97764 + +$y + 1 +30.6235 + +
+
+# For calculating the limit of quantification from a model from weighted +# regression, we need to supply weights, internally used for inverse.predict +# If we are not using a variance function, we can use the weight from +# the above example as a first approximation (x = 15 is close to our +# loq approx 14 from above). +loq(m, w.loq = 1.67) +
+
$x +[1] 7.346195 + +$y + 1 +17.90777 + +
+
# The weight for the loq should therefore be derived at x = 7.3 instead +# of 15, but the graphical procedure of Massart (p. 201) to derive the +# variances on which the weights are based is quite inaccurate anyway. +
+
+
+ + + +
+
+ + +
+ + \ No newline at end of file -- cgit v1.2.1