#' Calibration data from DIN 32645 #' #' Sample dataset to test the package. #' #' #' @name din32645 #' @docType data #' @format A dataframe containing 10 rows of x and y values. #' @references DIN 32645 (equivalent to ISO 11843), Beuth Verlag, Berlin, 1994 #' #' Dintest. Plugin for MS Excel for evaluations of calibration data. Written by #' Georg Schmitt, University of Heidelberg. Formerly available from the Website #' of the University of Heidelberg. #' #' Currie, L. A. (1997) Nomenclature in evaluation of analytical methods #' including detection and quantification capabilities (IUPAC Recommendations #' 1995). Analytica Chimica Acta 391, 105 - 126. #' @keywords datasets #' @examples #' #' m <- lm(y ~ x, data = din32645) #' calplot(m) #' #' ## Prediction of x with confidence interval #' prediction <- inverse.predict(m, 3500, alpha = 0.01) #' #' # This should give 0.07434 according to test data from Dintest, which #' # was collected from Procontrol 3.1 (isomehr GmbH) in this case #' round(prediction$Confidence, 5) #' #' ## Critical value: #' crit <- lod(m, alpha = 0.01, beta = 0.5) #' #' # According to DIN 32645, we should get 0.07 for the critical value #' # (decision limit, "Nachweisgrenze") #' round(crit$x, 2) #' # and according to Dintest test data, we should get 0.0698 from #' round(crit$x, 4) #' #' ## Limit of detection (smallest detectable value given alpha and beta) #' # In German, the smallest detectable value is the "Erfassungsgrenze", and we #' # should get 0.14 according to DIN, which we achieve by using the method #' # described in it: #' lod.din <- lod(m, alpha = 0.01, beta = 0.01, method = "din") #' round(lod.din$x, 2) #' #' ## Limit of quantification #' # This accords to the test data coming with the test data from Dintest again, #' # except for the last digits of the value cited for Procontrol 3.1 (0.2121) #' loq <- loq(m, alpha = 0.01) #' round(loq$x, 4) #' #' # A similar value is obtained using the approximation #' # LQ = 3.04 * LC (Currie 1999, p. 120) #' 3.04 * lod(m, alpha = 0.01, beta = 0.5)$x #' NULL #' Calibration data from Massart et al. (1997), example 1 #' #' Sample dataset from p. 175 to test the package. #' #' #' @name massart97ex1 #' @docType data #' @format A dataframe containing 6 observations of x and y data. #' @source Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S., #' Lewi, P.J., Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and #' Qualimetrics: Part A, Chapter 8. #' @keywords datasets NULL #' Calibration data from Massart et al. (1997), example 3 #' #' Sample dataset from p. 188 to test the package. #' #' #' @name massart97ex3 #' @docType data #' @format A dataframe containing 6 levels of x values with 5 observations of y #' for each level. #' @source Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S., #' Lewi, P.J., Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and #' Qualimetrics: Part A, Chapter 8. #' @keywords datasets #' @examples #' #' # For reproducing the results for replicate standard measurements in example 8, #' # we need to do the calibration on the means when using chemCal > 0.2 #' weights <- with(massart97ex3, { #' yx <- split(y, x) #' ybar <- sapply(yx, mean) #' s <- round(sapply(yx, sd), digits = 2) #' w <- round(1 / (s^2), digits = 3) #' }) #' #' massart97ex3.means <- aggregate(y ~ x, massart97ex3, mean) #' #' m3.means <- lm(y ~ x, w = weights, data = massart97ex3.means) #' #' # The following concords with the book p. 200 #' inverse.predict(m3.means, 15, ws = 1.67) # 5.9 +- 2.5 #' inverse.predict(m3.means, 90, ws = 0.145) # 44.1 +- 7.9 #' #' # The LOD is only calculated for models from unweighted regression #' # with this version of chemCal #' m0 <- lm(y ~ x, data = massart97ex3) #' lod(m0) #' #' # Limit of quantification from unweighted regression #' loq(m0) #' #' # For calculating the limit of quantification from a model from weighted #' # regression, we need to supply weights, internally used for inverse.predict #' # If we are not using a variance function, we can use the weight from #' # the above example as a first approximation (x = 15 is close to our #' # loq approx 14 from above). #' loq(m3.means, w.loq = 1.67) #' # The weight for the loq should therefore be derived at x = 7.3 instead #' # of 15, but the graphical procedure of Massart (p. 201) to derive the #' # variances on which the weights are based is quite inaccurate anyway. #' NULL #' Cadmium concentrations measured by AAS as reported by Rocke and Lorenzato #' (1995) #' #' Dataset reproduced from Table 1 in Rocke and Lorenzato (1995). #' #' #' @name rl95_cadmium #' @docType data #' @format A dataframe containing four replicate observations for each of the #' six calibration standards. #' @source Rocke, David M. und Lorenzato, Stefan (1995) A two-component model #' for measurement error in analytical chemistry. Technometrics 37(2), 176-184. #' @keywords datasets NULL #' Toluene amounts measured by GC/MS as reported by Rocke and Lorenzato (1995) #' #' Dataset reproduced from Table 4 in Rocke and Lorenzato (1995). The toluene #' amount in the calibration samples is given in picograms per 100 µL. #' Presumably this is the volume that was injected into the instrument. #' #' #' @name rl95_toluene #' @docType data #' @format A dataframe containing four replicate observations for each of the #' six calibration standards. #' @source Rocke, David M. und Lorenzato, Stefan (1995) A two-component model #' for measurement error in analytical chemistry. Technometrics 37(2), 176-184. #' @keywords datasets NULL #' Example data for calibration with replicates from University of Toronto #' #' Dataset read into R from #' \url{https://sites.chem.utoronto.ca/chemistry/coursenotes/analsci/stats/files/example14.xls}. #' #' #' @name utstats14 #' @docType data #' @format A tibble containing three replicate observations of the response for #' five calibration concentrations. #' @source David Stone and Jon Ellis (2011) Statistics in Analytical Chemistry. #' Tutorial website maintained by the Departments of Chemistry, University of #' Toronto. #' \url{https://sites.chem.utoronto.ca/chemistry/coursenotes/analsci/stats/index.html} #' @keywords datasets NULL #' Nitrite calibration data #' #' Example dataset B.1 from DIN 38402 with concentrations in µg/L and the extinction #' as response measured using continuous flow analysis (CFA) according to #' ISO 13395. #' #' @name din38402b1 #' @docType data #' @format A tibble containing 12 concentration levels with the respective #' instrument response values. #' @references DIN 38402-51:2017-05, Beuth Verlag, Berlin. #' https://dx.doi.org/10.31030/2657448 #' @keywords datasets NULL #' Copper calibration data #' #' Example dataset B.3 from DIN 38402. Cu was measured according to ISO 11885, #' using ICP-OES. The concentration are reported in mg/L and the response as #' counts/s, describing the count of photons that are detected by the #' photomultiplier detector of the device. #' #' @name din38402b3 #' @docType data #' @format A tibble containing 13 concentration levels and the respective #' instrument response values. #' @references DIN 38402-51:2017-05, Beuth Verlag, Berlin. #' https://dx.doi.org/10.31030/2657448 #' @keywords datasets NULL #' Carbamazepin calibration data #' #' Example dataset B.6 from DIN 38402 measured using LC-MS/MS. The #' concentrations are reported in in µg/L and the response in arbitrary #' units (AU). #' #' @name din38402b6 #' @docType data #' @format A tibble containing 12 concentration levels and the respective #' instrument response values. #' @references DIN 38402-51:2017-05, Beuth Verlag, Berlin. #' https://dx.doi.org/10.31030/2657448 #' @keywords datasets NULL #' Iron calibration data #' #' Example dataset C.3 from DIN 38402 determined by ion chromatography. #' Concentrations are reported in mg/L and the extinction as response. #' #' @name din38402c3 #' @docType data #' @format A tibble containing 10 concentration levels and the respective #' response values. #' @references DIN 38402-51:2017-05, Beuth Verlag, Berlin. #' https://dx.doi.org/10.31030/2657448 #' @keywords datasets NULL