Calibration data from DIN 32645

Usage

data(din32645)

Description

Sample dataset to test the package.

Format

A dataframe containing 10 rows of x and y values.

References

DIN 32645 (equivalent to ISO 11843), Beuth Verlag, Berlin, 1994

Dintest. Plugin for MS Excel for evaluations of calibration data. Written by Georg Schmitt, University of Heidelberg. http://www.rzuser.uni-heidelberg.de/~df6/download/dintest.htm

Currie, L. A. (1997) Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Analytica Chimica Acta 391, 105 - 126.

Examples

data(din32645) m <- lm(y ~ x, data = din32645) calplot(m)

## Prediction of x with confidence interval (prediction <- inverse.predict(m, 3500, alpha = 0.01))
$Prediction [1] 0.1054792 $`Standard Error` [1] 0.02215619 $Confidence [1] 0.07434261 $`Confidence Limits` [1] 0.03113656 0.17982178
# This should give 0.07434 according to test data from Dintest, which # was collected from Procontrol 3.1 (isomehr GmbH) in this case round(prediction$Confidence,5)
[1] 0.07434
## Critical value: (crit <- lod(m, alpha = 0.01, beta = 0.5))
$x [1] 0.0698127 $y 1 3155.393
# According to DIN 32645, we should get 0.07 for the critical value # (decision limit, "Nachweisgrenze") round(crit$x, 2)
[1] 0.07
# and according to Dintest test data, we should get 0.0698 from round(crit$x, 4)
[1] 0.0698
## Limit of detection (smallest detectable value given alpha and beta) # In German, the smallest detectable value is the "Erfassungsgrenze", and we # should get 0.14 according to DIN, which we achieve by using the method # described in it: lod.din <- lod(m, alpha = 0.01, beta = 0.01, method = "din") round(lod.din$x, 2)
[1] 0.14
## Limit of quantification # This accords to the test data coming with the test data from Dintest again, # except for the last digits of the value cited for Procontrol 3.1 (0.2121) (loq <- loq(m, alpha = 0.01))
$x [1] 0.2119575 $y 1 4528.787
round(loq$x,4)
[1] 0.212
# A similar value is obtained using the approximation # LQ = 3.04 * LC (Currie 1999, p. 120) 3.04 * lod(m,alpha = 0.01, beta = 0.5)$x
[1] 0.2122306