\name{din32645} \docType{data} \alias{din32645} \title{Calibration data from DIN 32645} \description{ Sample dataset to test the package. } \usage{data(din32645)} \format{ A dataframe containing 10 rows of x and y values. } \examples{ data(din32645) m <- lm(y ~ x, data=din32645) calplot(m) (prediction <- inverse.predict(m,3500,alpha=0.01)) # This should give 0.07434 according to Dintest test data, as # collected from Procontrol 3.1 (isomehr GmbH) round(prediction$Confidence,5) # According to Dintest test data, we should get 0.0698 for the critical value # (decision limit, "Nachweisgrenze") (lod <- lod(m, alpha = 0.01, beta = 0.5)) round(lod$x,4) # In German, the smallest detectable value is the "Erfassungsgrenze", and we # should get 0.140 according to Dintest test data, but with chemCal, we can't # reproduce this, lod(m, alpha = 0.01, beta = 0.01) # except by using an equivalent to the approximation # xD = 2 * Sc / A (Currie 1999, p. 118, or Orange Book, Chapter 18.4.3.7) lod.approx <- 2 * lod$x round(lod.approx, digits=3) # which seems to be the pragmatic definition in DIN 32645, as judging from # the Dintest test data. # This accords to the test data from Dintest again, except for the last digit # of the value cited for Procontrol 3.1 (0.2121) (loq <- loq(m, alpha = 0.01)) round(loq$x,4) # A similar value is obtained using the approximation # LQ = 3.04 * LC (Currie 1999, p. 120) 3.04 * lod(m,alpha = 0.01, beta = 0.5)$x } \references{ DIN 32645 (equivalent to ISO 11843) Dintest. Plugin for MS Excel for evaluations of calibration data. Written by Georg Schmitt, University of Heidelberg. \url{http://www.rzuser.uni-heidelberg.de/~df6/download/dintest.htm} Currie, L. A. (1997) Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Analytica Chimica Acta 391, 105 - 126. } \keyword{datasets}