\name{lod} \alias{lod} \alias{lod.lm} \alias{lod.rlm} \alias{lod.default} \alias{loq} \alias{loq.lm} \alias{loq.rlm} \alias{loq.default} \title{Estimate a limit of detection (LOD) or quantification (LOQ)} \usage{ lod(object, \dots, alpha = 0.05, k = 1, n = 1, w = "auto") loq(object, \dots, alpha = 0.05, k = 3, n = 1, w = "auto") } \arguments{ \item{object}{ A univariate model object of class \code{\link{lm}} or \code{\link[MASS:rlm]{rlm}} with model formula \code{y ~ x} or \code{y ~ x - 1}, optionally from a weighted regression. } \item{alpha}{ The error tolerance for the prediction of x values in the calculation. } \item{\dots}{ Placeholder for further arguments that might be needed by future implementations. } \item{k}{ The inverse of the maximum relative error tolerated at the desired LOD/LOQ. } \item{n}{ The number of replicate measurements for which the LOD/LOQ should be specified. } \item{w}{ The weight that should be attributed to the LOD/LOQ. Defaults to one for unweighted regression, and to the mean of the weights for weighted regression. See \code{\link{massart97ex3}} for an example how to take advantage of knowledge about the variance function. } } \value{ The estimated limit of detection for a model used for calibration. } \description{ A useful operationalisation of a lower limit L of a measurement method is simply the solution of the equation \deqn{L = k c(L)}{L = k * c(L)} where c(L) is half of the lenght of the confidence interval at the limit L. } \examples{ data(din32645) m <- lm(y ~ x, data = din32645) lod(m) } \keyword{manip}