% Generated by roxygen2: do not edit by hand % Please edit documentation in R/chemCal-package.R \docType{data} \name{massart97ex3} \alias{massart97ex3} \title{Calibration data from Massart et al. (1997), example 3} \format{ A dataframe containing 6 levels of x values with 5 observations of y for each level. } \source{ Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S., Lewi, P.J., Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and Qualimetrics: Part A, Chapter 8. } \usage{ massart97ex3 } \description{ Sample dataset from p. 188 to test the package. } \examples{ # For reproducing the results for replicate standard measurements in example 8, # we need to do the calibration on the means when using chemCal > 0.2 weights <- with(massart97ex3, { yx <- split(y, x) ybar <- sapply(yx, mean) s <- round(sapply(yx, sd), digits = 2) w <- round(1 / (s^2), digits = 3) }) massart97ex3.means <- aggregate(y ~ x, massart97ex3, mean) m3.means <- lm(y ~ x, w = weights, data = massart97ex3.means) # The following concords with the book p. 200 inverse.predict(m3.means, 15, ws = 1.67) # 5.9 +- 2.5 inverse.predict(m3.means, 90, ws = 0.145) # 44.1 +- 7.9 # The LOD is only calculated for models from unweighted regression # with this version of chemCal m0 <- lm(y ~ x, data = massart97ex3) lod(m0) # Limit of quantification from unweighted regression loq(m0) # For calculating the limit of quantification from a model from weighted # regression, we need to supply weights, internally used for inverse.predict # If we are not using a variance function, we can use the weight from # the above example as a first approximation (x = 15 is close to our # loq approx 14 from above). loq(m3.means, w.loq = 1.67) # The weight for the loq should therefore be derived at x = 7.3 instead # of 15, but the graphical procedure of Massart (p. 201) to derive the # variances on which the weights are based is quite inaccurate anyway. } \keyword{datasets}