aboutsummaryrefslogtreecommitdiff
path: root/docs/reference/calplot.html
blob: 88321b1f19b1dc9dbf0a04a3ec6df61271fef9e0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Plot calibration graphs from univariate linear models — calplot • chemCal</title><!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous"><script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../bootstrap-toc.css"><script src="../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"><script src="../pkgdown.js"></script><meta property="og:title" content="Plot calibration graphs from univariate linear models — calplot"><meta property="og:description" content="Produce graphics of calibration data, the fitted model as well as
confidence, and, for unweighted regression, prediction bands."><!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]--></head><body data-spy="scroll" data-target="#toc">
    

    <div class="container template-reference-topic">
      <header><div class="navbar navbar-default navbar-fixed-top" role="navigation">
  <div class="container">
    <div class="navbar-header">
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
        <span class="sr-only">Toggle navigation</span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
      </button>
      <span class="navbar-brand">
        <a class="navbar-link" href="../index.html">chemCal</a>
        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3</span>
      </span>
    </div>

    <div id="navbar" class="navbar-collapse collapse">
      <ul class="nav navbar-nav"><li>
  <a href="../articles/chemCal.html">Get started</a>
</li>
<li>
  <a href="../reference/index.html">Reference</a>
</li>
<li>
  <a href="../news/index.html">Changelog</a>
</li>
      </ul><ul class="nav navbar-nav navbar-right"><li>
  <a href="https://github.com/jranke/chemCal/" class="external-link">
    <span class="fab fa-github fa-lg"></span>
     
  </a>
</li>
      </ul></div><!--/.nav-collapse -->
  </div><!--/.container -->
</div><!--/.navbar -->

      

      </header><div class="row">
  <div class="col-md-9 contents">
    <div class="page-header">
    <h1>Plot calibration graphs from univariate linear models</h1>
    <small class="dont-index">Source: <a href="https://github.com/jranke/chemCal/blob/HEAD/R/calplot.R" class="external-link"><code>R/calplot.R</code></a></small>
    <div class="hidden name"><code>calplot.Rd</code></div>
    </div>

    <div class="ref-description">
    <p>Produce graphics of calibration data, the fitted model as well as
confidence, and, for unweighted regression, prediction bands.</p>
    </div>

    <div id="ref-usage">
    <div class="sourceCode"><pre class="sourceCode r"><code><span class="fu">calplot</span><span class="op">(</span>
  <span class="va">object</span>,
  xlim <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"auto"</span>, <span class="st">"auto"</span><span class="op">)</span>,
  ylim <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"auto"</span>, <span class="st">"auto"</span><span class="op">)</span>,
  xlab <span class="op">=</span> <span class="st">"Concentration"</span>,
  ylab <span class="op">=</span> <span class="st">"Response"</span>,
  legend_x <span class="op">=</span> <span class="st">"auto"</span>,
  alpha <span class="op">=</span> <span class="fl">0.05</span>,
  varfunc <span class="op">=</span> <span class="cn">NULL</span>
<span class="op">)</span></code></pre></div>
    </div>

    <div id="arguments">
    <h2>Arguments</h2>
    <dl><dt>object</dt>
<dd><p>A univariate model object of class <code><a href="https://rdrr.io/r/stats/lm.html" class="external-link">lm</a></code> or
<code><a href="https://rdrr.io/pkg/MASS/man/rlm.html" class="external-link">rlm</a></code> with model formula <code>y ~ x</code> or <code>y ~ x -
1</code>.</p></dd>
<dt>xlim</dt>
<dd><p>The limits of the plot on the x axis.</p></dd>
<dt>ylim</dt>
<dd><p>The limits of the plot on the y axis.</p></dd>
<dt>xlab</dt>
<dd><p>The label of the x axis.</p></dd>
<dt>ylab</dt>
<dd><p>The label of the y axis.</p></dd>
<dt>legend_x</dt>
<dd><p>An optional numeric value for adjusting the x coordinate of
the legend.</p></dd>
<dt>alpha</dt>
<dd><p>The error tolerance level for the confidence and prediction
bands. Note that this includes both tails of the Gaussian distribution,
unlike the alpha and beta parameters used in <code><a href="lod.html">lod</a></code> (see note
below).</p></dd>
<dt>varfunc</dt>
<dd><p>The variance function for generating the weights in the
model.  Currently, this argument is ignored (see note below).</p></dd>
</dl></div>
    <div id="value">
    <h2>Value</h2>
    <p>A plot of the calibration data, of your fitted model as well as
lines showing the confidence limits. Prediction limits are only shown for
models from unweighted regression.</p>
    </div>
    <div id="note">
    <h2>Note</h2>
    <p>Prediction bands for models from weighted linear regression require
weights for the data, for which responses should be predicted. Prediction
intervals using weights e.g. from a variance function are currently not
supported by the internally used function <code><a href="https://rdrr.io/r/stats/predict.lm.html" class="external-link">predict.lm</a></code>,
therefore, <code>calplot</code> does not draw prediction bands for such models.</p>
<p>It is possible to compare the <code>calplot</code> prediction bands with
the <code><a href="lod.html">lod</a></code> values if the <code><a href="lod.html">lod()</a></code> alpha and beta parameters
are half the value of the <code>calplot()</code> alpha parameter.</p>
    </div>
    <div id="author">
    <h2>Author</h2>
    <p>Johannes Ranke</p>
    </div>

    <div id="ref-examples">
    <h2>Examples</h2>
    <div class="sourceCode"><pre class="sourceCode r"><code><span class="r-in"></span>
<span class="r-in"><span class="fu"><a href="https://rdrr.io/r/utils/data.html" class="external-link">data</a></span><span class="op">(</span><span class="va">massart97ex3</span><span class="op">)</span></span>
<span class="r-in"><span class="va">m</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/stats/lm.html" class="external-link">lm</a></span><span class="op">(</span><span class="va">y</span> <span class="op">~</span> <span class="va">x</span>, data <span class="op">=</span> <span class="va">massart97ex3</span><span class="op">)</span></span>
<span class="r-in"><span class="fu">calplot</span><span class="op">(</span><span class="va">m</span><span class="op">)</span></span>
<span class="r-plt img"><img src="calplot-1.png" alt="" width="700" height="433"></span>
<span class="r-in"></span>
</code></pre></div>
    </div>
  </div>
  <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
    <nav id="toc" data-toggle="toc" class="sticky-top"><h2 data-toc-skip>Contents</h2>
    </nav></div>
</div>


      <footer><div class="copyright">
  <p></p><p>Developed by Johannes Ranke.</p>
</div>

<div class="pkgdown">
  <p></p><p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.2.</p>
</div>

      </footer></div>

  


  

  </body></html>

Contact - Imprint