1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>din32645. chemCal 0.1-35.900</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="author" content="">
<link href="css/bootstrap.css" rel="stylesheet">
<link href="css/bootstrap-responsive.css" rel="stylesheet">
<link href="css/highlight.css" rel="stylesheet">
<link href="css/staticdocs.css" rel="stylesheet">
<!--[if lt IE 9]>
<script src="http://html5shim.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'], ["\\(","\\)"] ],
processEscapes: true
}
});
</script>
<script type="text/javascript"
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<div class="navbar">
<div class="navbar-inner">
<div class="container">
<a class="brand" href="#">chemCal 0.1-35.900</a>
<div class="nav">
<ul class="nav">
<li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li>
</ul>
</div>
</div>
</div>
</div>
<div class="container">
<header>
</header>
<h1>Calibration data from DIN 32645</h1>
<div class="row">
<div class="span8">
<h2>Usage</h2>
<pre><div>data(din32645)</div></pre>
<div class="Description">
<h2>Description</h2>
<p>Sample dataset to test the package.</p>
</div>
<div class="Format">
<h2>Format</h2>
<p>A dataframe containing 10 rows of x and y values.</p>
</div>
<div class="References">
<h2>References</h2>
<p>DIN 32645 (equivalent to ISO 11843), Beuth Verlag, Berlin, 1994</p>
<p>Dintest. Plugin for MS Excel for evaluations of calibration data. Written
by Georg Schmitt, University of Heidelberg.
<a href = 'http://www.rzuser.uni-heidelberg.de/~df6/download/dintest.htm'>http://www.rzuser.uni-heidelberg.de/~df6/download/dintest.htm</a></p>
<p>Currie, L. A. (1997) Nomenclature in evaluation of analytical methods including
detection and quantification capabilities (IUPAC Recommendations 1995).
Analytica Chimica Acta 391, 105 - 126.</p>
</div>
<h2 id="examples">Examples</h2>
<pre class="examples"><div class='input'>data(din32645)
m <- lm(y ~ x, data = din32645)
calplot(m)
</div>
<p><img src='din32645-2.png' alt='' width='540' height='400' /></p>
<div class='input'>
## Prediction of x with confidence interval
(prediction <- inverse.predict(m, 3500, alpha = 0.01))
</div>
<div class='output'>$Prediction
[1] 0.1054792
$`Standard Error`
[1] 0.02215619
$Confidence
[1] 0.07434261
$`Confidence Limits`
[1] 0.03113656 0.17982178
</div>
<div class='input'>
# This should give 0.07434 according to test data from Dintest, which
# was collected from Procontrol 3.1 (isomehr GmbH) in this case
round(prediction$Confidence,5)
</div>
<div class='output'>[1] 0.07434
</div>
<div class='input'>
## Critical value:
(crit <- lod(m, alpha = 0.01, beta = 0.5))
</div>
<div class='output'>$x
[1] 0.0698127
$y
1
3155.393
</div>
<div class='input'>
# According to DIN 32645, we should get 0.07 for the critical value
# (decision limit, "Nachweisgrenze")
round(crit$x, 2)
</div>
<div class='output'>[1] 0.07
</div>
<div class='input'># and according to Dintest test data, we should get 0.0698 from
round(crit$x, 4)
</div>
<div class='output'>[1] 0.0698
</div>
<div class='input'>
## Limit of detection (smallest detectable value given alpha and beta)
# In German, the smallest detectable value is the "Erfassungsgrenze", and we
# should get 0.14 according to DIN, which we achieve by using the method
# described in it:
lod.din <- lod(m, alpha = 0.01, beta = 0.01, method = "din")
round(lod.din$x, 2)
</div>
<div class='output'>[1] 0.14
</div>
<div class='input'>
## Limit of quantification
# This accords to the test data coming with the test data from Dintest again,
# except for the last digits of the value cited for Procontrol 3.1 (0.2121)
(loq <- loq(m, alpha = 0.01))
</div>
<div class='output'>$x
[1] 0.2119575
$y
1
4528.787
</div>
<div class='input'>round(loq$x,4)
</div>
<div class='output'>[1] 0.212
</div>
<div class='input'>
# A similar value is obtained using the approximation
# LQ = 3.04 * LC (Currie 1999, p. 120)
3.04 * lod(m,alpha = 0.01, beta = 0.5)$x
</div>
<div class='output'>[1] 0.2122306
</div></pre>
</div>
<div class="span4">
<!-- <ul>
<li>din32645</li>
</ul>
<ul>
<li>datasets</li>
</ul> -->
</div>
</div>
<footer>
<p class="pull-right"><a href="#">Back to top</a></p>
<p>Built by <a href="https://github.com/hadley/staticdocs">staticdocs</a>. Styled with <a href="http://twitter.github.com/bootstrap">bootstrap</a>.</p>
</footer>
</div>
</body>
</html>
|