1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>massart97ex3. chemCal 0.1-35.900</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="author" content="">
<link href="css/bootstrap.css" rel="stylesheet">
<link href="css/bootstrap-responsive.css" rel="stylesheet">
<link href="css/highlight.css" rel="stylesheet">
<link href="css/staticdocs.css" rel="stylesheet">
<!--[if lt IE 9]>
<script src="http://html5shim.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'], ["\\(","\\)"] ],
processEscapes: true
}
});
</script>
<script type="text/javascript"
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<div class="navbar">
<div class="navbar-inner">
<div class="container">
<a class="brand" href="#">chemCal 0.1-35.900</a>
<div class="nav">
<ul class="nav">
<li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li>
</ul>
</div>
</div>
</div>
</div>
<div class="container">
<header>
</header>
<h1>Calibration data from Massart et al. (1997), example 3</h1>
<div class="row">
<div class="span8">
<h2>Usage</h2>
<pre><div>data(massart97ex3)</div></pre>
<div class="Description">
<h2>Description</h2>
<p>Sample dataset from p. 188 to test the package.</p>
</div>
<div class="Format">
<h2>Format</h2>
<p>A dataframe containing 6 levels of x values with 5
observations of y for each level.</p>
</div>
<div class="Source">
<h2>Source</h2>
<p>Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S., Lewi, P.J.,
Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and Qualimetrics: Part A,
Chapter 8.</p>
</div>
<h2 id="examples">Examples</h2>
<pre class="examples"><div class='input'>data(massart97ex3)
attach(massart97ex3)
</div>
<strong class='message'>Die folgenden Objekte sind maskiert von massart97ex3 (pos = 3):
x, y
</strong>
<div class='input'>yx <- split(y, x)
ybar <- sapply(yx, mean)
s <- round(sapply(yx, sd), digits = 2)
w <- round(1 / (s^2), digits = 3)
weights <- w[factor(x)]
m <- lm(y ~ x, w = weights)
calplot(m)
</div>
<strong class='warning'>Warning message:
Assuming constant prediction variance even though model fit is weighted
</strong>
<p><img src='massart97ex3-5.png' alt='' width='540' height='400' /></p>
<div class='input'>
# The following concords with the book p. 200
inverse.predict(m, 15, ws = 1.67) # 5.9 +- 2.5
</div>
<div class='output'>$Prediction
[1] 5.865367
$`Standard Error`
[1] 0.8926109
$Confidence
[1] 2.478285
$`Confidence Limits`
[1] 3.387082 8.343652
</div>
<div class='input'>inverse.predict(m, 90, ws = 0.145) # 44.1 +- 7.9
</div>
<div class='output'>$Prediction
[1] 44.06025
$`Standard Error`
[1] 2.829162
$Confidence
[1] 7.855012
$`Confidence Limits`
[1] 36.20523 51.91526
</div>
<div class='input'>
# The LOD is only calculated for models from unweighted regression
# with this version of chemCal
m0 <- lm(y ~ x)
lod(m0)
</div>
<div class='output'>$x
[1] 5.407085
$y
1
13.63911
</div>
<div class='input'>
# Limit of quantification from unweighted regression
loq(m0)
</div>
<div class='output'>$x
[1] 13.97764
$y
1
30.6235
</div>
<div class='input'>
# For calculating the limit of quantification from a model from weighted
# regression, we need to supply weights, internally used for inverse.predict
# If we are not using a variance function, we can use the weight from
# the above example as a first approximation (x = 15 is close to our
# loq approx 14 from above).
loq(m, w.loq = 1.67)
</div>
<div class='output'>$x
[1] 7.346195
$y
1
17.90777
</div>
<div class='input'># The weight for the loq should therefore be derived at x = 7.3 instead
# of 15, but the graphical procedure of Massart (p. 201) to derive the
# variances on which the weights are based is quite inaccurate anyway.
</div></pre>
</div>
<div class="span4">
<!-- <ul>
<li>massart97ex3</li>
</ul>
<ul>
<li>datasets</li>
</ul> -->
</div>
</div>
<footer>
<p class="pull-right"><a href="#">Back to top</a></p>
<p>Built by <a href="https://github.com/hadley/staticdocs">staticdocs</a>. Styled with <a href="http://twitter.github.com/bootstrap">bootstrap</a>.</p>
</footer>
</div>
</body>
</html>
|