drdata <- function(substances, experimentator = "%", db = "cytotox", celltype="IPC-81",enzymetype="AChE",whereClause="1", ok="'ok'") { library(RODBC) channel <- odbcConnect(db,uid="cytotox",pwd="cytotox",case="tolower") slist <- paste(substances,collapse="','") if (db == "cytotox") { responsetype <- "viability" testtype <- "celltype" type <- celltype } else { responsetype <- "activity" testtype <- "enzyme" type <- enzymetype } query <- paste("SELECT conc,",responsetype,",unit,experimentator,substance,",testtype, ",plate,ok FROM ", db, " WHERE substance IN ('", slist,"') AND experimentator LIKE '", experimentator,"' AND ",testtype," LIKE '", type,"' AND ", whereClause," AND ok in (", ok,")",sep="") data <- sqlQuery(channel,query) odbcClose(channel) names(data)[[1]] <- "dose" names(data)[[2]] <- "response" data$dosefactor <- factor(data$dose) data$substance <- factor(data$substance,levels=substances) return(data) } linearlogisf <- function(x,k,f,mu,b) { k*(1 + f*x) / (1 + ((2*f*(10^mu) + 1) * ((x/(10^mu))^b))) } drfit <- function(data, startlogEC50 = NA, chooseone=TRUE, lognorm = TRUE, logis = FALSE, linearlogis = FALSE, linearlogisWrong = NA, b0 = 2, f0 = 0) { substances <- levels(data$substance) unit <- levels(as.factor(data$unit)) ri <- rix <- 0 # ri is the index over the result rows # rix is used later to check if any # model result was appended rsubstance <- array() # the substance names in the results rn <- vector() # number of dose-response curves rlhd <- rlld <- vector() # highest and lowest doses tested mtype <- array() # the modeltypes sigma <- array() # the standard deviation of the residuals logEC50 <- vector() stderrlogEC50 <- vector() slope <- vector() b <- vector() f <- vector() splitted <- split(data,data$substance) for (i in substances) { tmp <- splitted[[i]] fit <- FALSE n <- round(length(tmp$response)/9) if (length(tmp$response) == 0) { nodata = TRUE } else { nodata = FALSE } rix <- ri if (!nodata) { if (is.na(startlogEC50[i])){ w <- 1/abs(tmp$response - 0.3) startlogEC50[[i]] <- sum(w * log10(tmp$dose))/sum(w) } highestdose <- max(tmp$dose) lowestdose <- min(tmp$dose) lhd <- log10(highestdose) lld <- log10(lowestdose) responseathighestdose <- mean(subset(tmp,dose==highestdose)$response) if (responseathighestdose < 0.5) { inactive <- FALSE if (linearlogis && length(subset(linearlogisWrong,linearlogisWrong == i))==0) { m <- try(nls(response ~ linearlogisf(dose,1,f,logEC50,b), data=tmp, start=list(f=f0,logEC50=startlogEC50[[i]],b=b0))) if (!inherits(m, "try-error")) { fit <- TRUE ri <- ri + 1 s <- summary(m) sigma[[ri]] <- s$sigma rsubstance[[ri]] <- i rn[[ri]] <- n rlld[[ri]] <- log10(lowestdose) rlhd[[ri]] <- log10(highestdose) mtype[[ri]] <- "linearlogis" logEC50[[ri]] <- coef(m)[["logEC50"]] slope[[ri]] <- NA if (logEC50[[ri]] > rlhd[[ri]]) { logEC50[[ri]] <- NA stderrlogEC50[[ri]] <- NA b[[ri]] <- NA f[[ri]] <- NA } else { stderrlogEC50[[ri]] <- s$parameters["logEC50","Std. Error"] b[[ri]] <- coef(m)[["b"]] f[[ri]] <- coef(m)[["f"]] } } } if (logis) { m <- try(nls(response ~ plogis(-log10(dose),-logEC50,slope), data=tmp, start=list(logEC50=startlogEC50[[i]],slope=1))) if (chooseone==FALSE || fit==FALSE) { if (!inherits(m, "try-error")) { fit <- TRUE ri <- ri + 1 s <- summary(m) sigma[[ri]] <- s$sigma rsubstance[[ri]] <- i rn[[ri]] <- n rlld[[ri]] <- log10(lowestdose) rlhd[[ri]] <- log10(highestdose) mtype[[ri]] <- "logis" logEC50[[ri]] <- coef(m)[["logEC50"]] b[[ri]] <- NA f[[ri]] <- NA if (logEC50[[ri]] > rlhd[[ri]]) { logEC50[[ri]] <- NA slope[[ri]] <- NA stderrlogEC50[[ri]] <- NA } else { slope[[ri]] <- coef(m)[["slope"]] stderrlogEC50[[ri]] <- s$parameters["logEC50","Std. Error"] } } } } if (lognorm) { m <- try(nls(response ~ pnorm(-log10(dose),-logEC50,slope), data=tmp, start=list(logEC50=startlogEC50[[i]],slope=1))) if (chooseone==FALSE || fit==FALSE) { if (!inherits(m, "try-error")) { fit <- TRUE ri <- ri + 1 s <- summary(m) sigma[[ri]] <- s$sigma rsubstance[[ri]] <- i rn[[ri]] <- n rlld[[ri]] <- log10(lowestdose) rlhd[[ri]] <- log10(highestdose) mtype[[ri]] <- "lognorm" logEC50[[ri]] <- coef(m)[["logEC50"]] b[[ri]] <- NA f[[ri]] <- NA if (logEC50[[ri]] > rlhd[[ri]]) { logEC50[[ri]] <- NA slope[[ri]] <- NA stderrlogEC50[[ri]] <- NA } else { slope[[ri]] <- coef(m)[["slope"]] stderrlogEC50[[ri]] <- s$parameters["logEC50","Std. Error"] } } } } } else { inactive <- TRUE } } if (ri == rix) { # if no entry was appended for this substance ri <- ri + 1 rsubstance[[ri]] <- i rn[[ri]] <- n if (nodata) { rlld[[ri]] <- rlhd[[i]] <- NA mtype[[ri]] <- "no data" } else { rlld[[ri]] <- log10(lowestdose) rlhd[[i]] <- log10(highestdose) if (inactive) { mtype[[ri]] <- "inactive" } else { mtype[[ri]] <- "no fit" } } sigma[[ri]] <- NA logEC50[[ri]] <- NA stderrlogEC50[[ri]] <- NA slope[[ri]] <- NA b[[ri]] <- NA f[[ri]] <- NA } } results <- data.frame(rsubstance,rn, rlhd, mtype, logEC50, stderrlogEC50, unit, sigma) names(results) <- c("Substance","n", "lhd","mtype","logEC50","std","unit","sigma") if (lognorm || logis) { results$slope <- slope } if (linearlogis) { results$b <- b results$f <- f } return(results) } drplot <- function(drresults, data, dtype = "std", alpha = 0.95, path = "./", fileprefix = "drplot", overlay = FALSE, postscript = FALSE, png = FALSE, bw = TRUE, colors = 1:8,devoff=T) { unitlevels <- levels(as.factor(drresults$unit)) if (length(unitlevels) == 1) { unit <- unitlevels } else { unit <- "different units" } # Get the plot limits on the x-axis (log of the dose) if(is.data.frame(data)) { if (min(data$dose == 0)) { cat("At least one of the dose levels is 0 - this is not a valid dose.") } else { lld <- log10(min(data$dose)) } lhd <- log10(max(data$dose)) hr <- max(data$response) dsubstances <- levels(data$substance) } else { lld <- min(drresults[["logEC50"]],na.rm=TRUE) - 2 lhd <- max(drresults[["logEC50"]],na.rm=TRUE) + 2 if (length(subset(drresults,mtype=="linearlogis")$Substance) != 0) { hr <- 1.8 } else { hr <- 1.0 } } # Prepare overlay plot if requested if (overlay) { if (postscript) { filename = paste(path,fileprefix,".eps",sep="") postscript(file=filename, paper="special",width=7,height=7,horizontal=FALSE,pointsize=12) cat("Created File: ",filename,"\n") } if (png) { filename = paste(path,fileprefix,".png",sep="") png(filename=filename, width=500, height=500,pointsize=12) cat("Created File: ",filename,"\n") } if (!postscript && !png) { x11(width=7,height=7,pointsize=12) } plot(0,type="n", xlim=c(lld - 0.5, lhd + 1), ylim= c(-0.1, hr + 0.2), xlab=paste("Decadic Logarithm of the dose in ", unit), ylab="Normalized response") } # Plot the data either as raw data or as error bars if(is.data.frame(data)) { splitted <- split(data,data$substance) n <- 0 if (bw) colors <- rep("black",length(dsubstances)) for (i in dsubstances) { n <- n + 1 tmp <- splitted[[i]] if (length(tmp$response) != 0) { color <- colors[[n]] # Prepare the single graphs if an overlay is not requested if (!overlay) { if (postscript) { filename = paste(path,fileprefix,sub(" ","_",gsub("([\(\) ])", "", i)),".eps",sep="") postscript(file=filename, paper="special",width=7,height=7,horizontal=FALSE,pointsize=12) cat("Created File: ",filename,"\n") } if (png) { filename = paste(path,fileprefix,sub(" ","_",gsub("([\(\) ])", "", i)),".png",sep="") png(filename=filename, width=500, height=500,pointsize=12) cat("Created File: ",filename,"\n") } if (!postscript && !png) { x11(width=7,height=7,pointsize=12) } plot(0,type="n", xlim=c(lld - 0.5, lhd + 2), ylim= c(-0.1, hr + 0.2), xlab=paste("Decadic Logarithm of the dose in ", unit), ylab="Normalized response") } if (!overlay) legend(lhd - 1, hr + 0.1, i,lty = 1, col = color) tmp$dosefactor <- factor(tmp$dose) # necessary because the old # factor has all levels, not # only the ones tested with # this substance # Plot the data, if requested if (dtype != "none") { if (dtype == "raw") { points(log10(tmp$dose),tmp$response,col=color) } else { splitresponses <- split(tmp$response,tmp$dosefactor) means <- sapply(splitresponses,mean) lengths <- sapply(splitresponses,length) vars <- sapply(splitresponses,var) standarddeviations <- sqrt(vars) } if (dtype == "std") { tops <- means + standarddeviations bottoms <- means - standarddeviations } if (dtype == "conf") { confidencedeltas <- qt((1 + alpha)/2, lengths - 1) * sqrt(vars) tops <- means + confidencedeltas bottoms <- means - confidencedeltas } if (dtype != "raw") { x <- log10(as.numeric(levels(tmp$dosefactor))) segments(x,bottoms,x,tops,col=color) points(x,means,col=color) smidge <- 0.05 segments(x - smidge,bottoms,x + smidge,bottoms,col=color) segments(x - smidge,tops,x + smidge,tops,col=color) } } # Plot the fits, if there are any fits <- subset(drresults,Substance == i) nf <- length(fits$Substance) # number of fits to plot if (nf > 0) { for (j in 1:nf) { logEC50 <- fits[j,"logEC50"] mtype <- as.character(fits[j, "mtype"]) if (mtype == "lognorm") { slope <- fits[j,"slope"] plot(function(x) pnorm(-x,-logEC50,slope),lld - 0.5, lhd + 2, add=TRUE,col=color) } if (mtype == "logis") { slope <- fits[j,"slope"] plot(function(x) plogis(-x,-logEC50,slope),lld - 0.5, lhd + 2, add=TRUE,col=color) } if (mtype == "linearlogis") { plot(function(x) linearlogisf(10^x,1,fits[j,"f"],fits[j,"logEC50"],fits[j,"b"]), lld - 0.5, lhd + 2, add=TRUE,col=color) } } } if (!overlay && (postscript || png)) dev.off() } else { cat("No data for ",i,"\n") } } } if (overlay) legend(lhd - 1, hr + 0.1, dsubstances,lty = 1, col = colors) if (overlay && (postscript || png)) { if (devoff) { dev.off() } } } checkplate <- function(plate,db="cytotox") { library(RODBC) channel <- odbcConnect(db,uid="cytotox",pwd="cytotox",case="tolower") if (db == "cytotox") { responsetype <- "viability" testtype <- "celltype" } else { responsetype <- "activity" testtype <- "enzyme" } platequery <- paste("SELECT experimentator,substance,",testtype,",conc,unit,",responsetype,",performed,ok", "FROM ",db," WHERE plate=", plate) controlquery <- paste("SELECT type,response FROM controls WHERE plate=",plate) platedata <- sqlQuery(channel,platequery) controldata <- sqlQuery(channel,controlquery) odbcClose(channel) if (length(platedata$experimentator) < 1) { cat("There is no response data for plate ",plate," in database ",db,"\n") } else { platedata$experimentator <- factor(platedata$experimentator) platedata$type <- factor(platedata[[testtype]]) platedata$substance <- factor(platedata$substance) platedata$unit <- factor(platedata$unit) platedata$performed <- factor(platedata$performed) platedata$ok <- factor(platedata$ok) blinds <- subset(controldata,type=="blind") controls <- subset(controldata,type=="control") numberOfBlinds <- length(blinds$response) numberOfControls <- length(controls$response) meanOfBlinds <- mean(blinds$response) meanOfControls <- mean(controls$response) stdOfBlinds <- sd(blinds$response) stdOfControls <- sd(controls$response) cat("Plate ",plate," from database ",db,"\n", "\tExperimentator: ",levels(platedata$experimentator),"\n", "\tType(s): ",levels(platedata$type),"\n", "\tPerformed on : ",levels(platedata$performed),"\n", "\tSubstance(s): ",levels(platedata$substance),"\n", "\tConcentration unit: ",levels(platedata$unit),"\n", "\tOK: ",levels(platedata$ok),"\n", "\t\tNumber \tMean \tStandard Deviation\n", "blind\t\t",numberOfBlinds,"\t",meanOfBlinds,"\t",stdOfBlinds,"\n", "control\t",numberOfControls,"\t",meanOfControls,"\t",stdOfControls,"\n") par(ask=TRUE) boxplot(blinds$response,controls$response,names=c("blinds","controls"),ylab="Response",main=paste("Plate ",plate)) drdata <- platedata[c(2,4,6)] drdata$substance <- factor(drdata$substance) substances <- levels(drdata$substance) plot(log10(drdata$conc),drdata$viability, xlim=c(-2.5, 4.5), ylim= c(-0.1, 2), xlab=paste("decadic logarithm of the concentration in ",levels(platedata$unit)), ylab=responsetype) drdatalist <- split(drdata,drdata$substance) for (i in 1:length(drdatalist)) { points(log10(drdatalist[[i]]$conc),drdatalist[[i]][[responsetype]],col=i); } legend(3.0,1.5,substances, pch=1, col=1:length(substances)) title(main=paste("Plate ",plate," - ",levels(platedata$experimentator)," - ",levels(platedata$type))) } } checksubstance <- function(substance,db="cytotox",experimentator="%",celltype="%",enzymetype="%",whereClause="1",ok="%") { library(RODBC) channel <- odbcConnect(db,uid="cytotox",pwd="cytotox",case="tolower") if (db == "cytotox") { responsetype <- "viability" testtype <- "celltype" type <- celltype } else { responsetype <- "activity" testtype <- "enzyme" type <- enzymetype } query <- paste("SELECT experimentator,substance,",testtype,",plate,conc,unit,",responsetype,",ok", " FROM ",db," WHERE substance LIKE '", substance,"' AND experimentator LIKE '", experimentator,"' AND ",testtype," LIKE '", type,"' AND ", whereClause," AND ok LIKE '",ok,"'",sep="") data <- sqlQuery(channel,query) odbcClose(channel) data$experimentator <- factor(data$experimentator) data$substance <- factor(data$substance) substances <- levels(data$substance) data$type <- factor(data[[testtype]]) data$plate <- factor(data$plate) plates <- levels(data$plate) concentrations <- split(data$conc,data$conc) concentrations <- as.numeric(names(concentrations)) data$unit <- factor(data$unit) data$ok <- factor(data$ok) if (length(plates)>6) { palette(rainbow(length(plates))) } plot(log10(data$conc),data[[responsetype]], xlim=c(-2.5, 4.5), ylim= c(-0.1, 2), xlab=paste("decadic logarithm of the concentration in ",levels(data$unit)), ylab=responsetype) platelist <- split(data,data$plate) for (i in 1:length(platelist)) { points(log10(platelist[[i]]$conc),platelist[[i]][[responsetype]],col=i); } legend(3.5,1.7,plates, pch=1, col=1:length(plates)) title(main=paste(substance," - ",levels(data$experimentator)," - ",levels(data$type))) cat("Substanz ",substance,"\n", "\tExperimentator(s):",levels(data$experimentator),"\n", "\tType(s):\t",levels(data$type),"\n", "\tSubstance(s):\t",levels(data$substance),"\n", "\tPlate(s):\t",plates,"\n\n") }